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Motivation – estimating anthropogenic emissions with satellite 

observations (made close to the sources)

 Anthropogenic GHG emissions are recognized as cause of the climate change, 

so extra focus is now on slowing down and reversing global warming (Paris 

agreement), through GHG emission reduction by all UNFCCC parties

 UNFCCC system for emission reduction/trends reporting set time periods of 5 

years, eg 2016-2020, the countries national emission inventory reports (using 

IPCC Guidelines on Inventories) will be summarized in a step called global 

stocktake (3 years later, 2023), and compared to observed GHG trends.

 Studies made for National Emission Inventory verification targeting CH4

emissions in Switzerland (Henne 2016), UK (Manning 2011), India  (Ganesan et 

al 2017) use high resolution (0.1 to 0.3 degrees) regional Lagrangian transport 

modeling, as most efficient for studying anthropogenic emissions of CH4

 Global inverse modeling products, assessments such as CAMS, GCP-CH4 would 

benefit from upgrading to use of high resolution transport resolving the 

anthropogenic plumes at resolution of the satellite pixel (7 – 10 km)
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Transport model: Coupled Eulerian-Lagrangian transport model (NIES 

TM + Flexpart) at 0.1 degree spatial resolution

-Configuration of NIES-TM  

- resolution 2.5  degree

- reduced grid near poles 

- mass conserving meteorology, mass 

fluxes on hybrid isentropic vertical 

coordinates

-Configuration of Flexpart

-JCDAS meteorology (1.25 deg, 40 model 

levels, 6 hourly)

-surface flux footprints estimated on 0.1x0.1 

deg, daily step

-time window 3 days (for coupling to NIES-

TM at 0 GMT)

-for coupling to NIES-TM, 3D concentration 

footprints estimated on hybrid-isentropic 

vertical grid at 2.5 deg horizontal 

resolution

-Adjoint of coupled model

- hand-coded adjoint with same CPU cost in 

forward and adjoint modes, revised after 

Belikov et al GMD 2016

Example of adjoint model simulation of the 

observation footprint. Sensitivity of CO2

concentrations ppm/(µmol/(m2/s)) to surface fluxes, 

at TCCON site locations: Belikov et al ACP  2017

More details in papers:
Janardanan, R., et al: Country-Scale Analysis of Methane 

Emissions with a High-Resolution Inverse Model Using 

GOSAT and Surface Observations, Remote Sensing, 12, 

375, 2020.

Wang, F., et al.: Methane Emission Estimates by the Global 

High-Resolution Inverse Model Using National Inventories, 

Remote Sensing, 11, 2489, 2019.

Maksyutov, S., et al: Technical note: A high-resolution inverse 

modelling technique for estimating surface CO2 fluxes based 

on the NIES-TM – FLEXPART coupled transport model and 

its adjoint, Atmos. Chem. Phys. Discuss, 2020.
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Prior fluxes for CH4 flux optimization with flux resolution of 0.1 deg 

Prior fluxes, sinks:

• EDGAR 4.3.2 anthropogenic: 

fossil/industrial, coal, oil and 

gas, municipal and agriculture

2. VISIT - wetland and soil sink

3. GFAS fire (daily)

4. Termites, ocean, geological as 

in Transcom-CH4

5. 3D monthly OH, O1D, Cl as in 

Transcom-CH4

VISIT wetland fluxes 

remapped from original 0.5 

deg to 0.1 degree using maps 

of wetland area (GLWD 1km)

Flux corrections estimated for 2 flux categories

1. Anthropogenic, uncertainty 0.3  of EDGAR 4.3.2, monthly 

2. Wetlands, uncertainty 0.5  of VISIT (Cao), monthly climatology-Time window: 18 

month, from Oct, prev. year – Mar , following year.

Optimization problem: reconstruct bi-weekly fluxes, at resolutions of 0.1 deg,“week” 

defined as ¼ of a month
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Inverse model input – ground-based and GOSAT data 

GOSAT CH4 retrievals 

v02.72

Location of ground-based 

measurement sites of 

atmospheric CH4.

-Data 

providers: WDCGG, 

NOAA, ECCC, LSCE, 

ICOS, JR-STATION, 

NIES/CGER, FMI

Black: stationary sites

Blue: ship cruises
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Optimized: emission scaling factors, and concentrations

Annual mean relative corrections (scaling factors) to 

anthropogenic (top) and wetland (bottom)  emissions 

(Wang et al. 2019)

Optimized (green), forward(plum), 

observed(blue) CH4 in 2015

Siberian JR-STATION 

network: Optimized (green), 

forward(plum), observed(blue) 
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Estimated (optimized) total CH4 emissions

• Flux map in 0.1x0.1 grid (mgCH4/m2/day)
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National-scale CH4 emissions (from Janardanan et al, 2020)

Difference between estimated anthropogenic 

emissions and National Inventory report is within 

uncertainty

Country Prior total
Posterior 

total Natural Anthropogenic 
Anthropogenic-

NIR Uncertainty 

CHN 60.1 52 6.3 45.7 −8.6 8.6

USA 51.6 55.7 25.9 29.8 2 7.8

RUS 47.8 45.2 13.2 31.9 −2.3 7.8

BRA 45.6 56.2 39.8 16.5 0.1 10

IND 29.9 36.5 12.3 24.2 4.1 5.3

CAN 23.4 16.4 12.2 4.2 0.5 4.5

IDN 19.5 20.6 8.7 11.8 0.7 2.5

VEN 9.2 11.6 8.3 3.2 0.2 2

BGD 8.6 11.1 5.9 5.2 0.6 1.7

NGA 8.3 8.5 2.4 6.1 0.2 1.5

PAK 7.7 8 0.6 7.4 0.2 1

ARG 7.7 7 3.8 3.3 −0.6 1.2
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Inverse model setup for CO2 inversion with Obspack-GVP  data

details in: Maksyutov et al ACPD 2020

-Observational data:  Obspack GVPlus 2015 (2010-2012)

-Prior uncertainty:

land:    monthly MODIS GPP (multiplied by 0.2)

ocean: monthly inter-annual variability of the OTTM 4D-var model fluxes

Prior fluxes

a) Fossil  

ODIAC

b) Bio      

VISIT 

mosaic

c) Fire     

GFAS

d) Ocean 

OTTM

b)

c) d)

a)
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Optimized CO2 concentrations

Simulated and observed concentrations (blue - observed, plum -forward (unoptimized), green – optimized) at 

Barrow (BRW), Jungfraujoch (JFJ), Wisconsin (LEF), Pallas (PAL), Syowa (SYO), and Yonagunijima (YON).
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Residual misfit and comparison with NOAA 

Carbontracker 2017

RMS difference between model and observations in 2010-2012 for (surface) sites 

included in inversion (blue – prior, red – optimized, green – CT2017) 
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Summary 

Ability to quantify natural and anthropogenic fluxes of CH4 and CO2 by atmospheric 

observations is valuable for climate change mitigation. 

The national anthropogenic emission estimates are mostly done made using high 

resolution regional Lagrangian models. – But we developed a computationally efficient 

approach for inverse surface flux modeling at fine-grid scale of 0.1 degree globally, 

demonstrated good model fit to ground based observations.

The model was applied to estimating the national scale anthropogenic/natural CH4 

emissions with GOSAT data during 2010-2017, using national inventory estimate as 

prior. The estimated emissions are matching the national inventory reported amounts 

within the inverse model uncertainty range. Large uncertainty was estimated for Brazil 

and some other regions, due to influence from natural wetland emission uncertainty. 

Need to have more observations (Tropomi?) for stronger separation between 

anthropogenic and natural fluxes.

Inverse model application to CO2 flux estimates using surface observations only 

demonstrated good fit to observations, similar to other established inverse modeling 

systems like Carbontracker.
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Flux inversion problem

)( xxHy p 

    xBxxHrRxHrJ TT 11

2

1

2

1  

pxHyr 

TT DLLDB  zDLx 
TR   rb 1 LHA  1

Inverse problem - find a surface flux field x that matches the observed CO2 

concentrations y:

Here, y – CH4 observations, H=HE+HL – transport model (linear 

operator), xp – prior flux, x – grid-resolving flux correction field

The cost function

r - residual misfit, B - flux error covariance matrix, R -data uncertainty

By applying substitutions: 

where

Derivative of J is used in Quasi-Newtonian 

method (M1QN3) to find solution
  zzAbAzJ T 

smoothness 

constraint


