

Japan's Contribution to **Space-based Greenhouse Gas Observing Systems: GOSAT Series**

Tsuneo Matsunaga and Hiroshi Tanimoto

National Institute for Environmental Studies (NIES), Japan

What is GOSAT Series?

- Japanese earth observation satellite series for measurements of atmospheric concentrations of greenhouse gases
 - **GOSAT** (2009 -) FTS for CO_2 and CH_4
 - **GOSAT-2** (2018 -) FTS for CO₂, CH₄, and CO
 - GOSAT-GW (FY2023 -) Imaging spectrometer for CO₂, CH₄, and NO₂

Organizations

- Joint projects by MOE, NIES, and JAXA
- NIES is responsible for generation, validation, distribution, and archiving of gas concentration and flux data
- Science Teams by domestic scientists
- Collaboration agreements with foreign space agencies
- Participation of overseas researchers via GOSAT Series RA.

Mean CH₄ Concentration

(April 2009 - September 2022)

(V02.00, Full Physics)

Specifications of GOSAT, GOSAT-2, and GOSAT-GW

	GOSAT	GOSAT-2	GOSAT-GW
Launch / lifetime	2009 / 5 years	2018 / 5 years	FY2023 / 7 years
Satellite mass / power	1.75 t / 3770 W	1.8 t / 5000 W	2.9 t / 5200 W
Orbit	666 km, 3 days, 13:00, descending	613 km, 6 days, 13:00, descending	666 km, 3 days, 13:30, ascending
Spectrometer	FTS	FTS-2	TANSO-3 (Grating)
Major targets	CO ₂ , CH ₄	CO ₂ , CH ₄ , CO	CO ₂ , CH ₄ , NO ₂
Spectral bands	0.7 / 1.6 / 2 μm + TIR	0.7 / 1.6 / 2 μm + TIR	0.45 / 0.7 / 1.6 μm
Spectral Resolution (Sampling interval)	0.2 cm ⁻¹ , (\approx 0.01 nm @ 0.7 μm, \approx 0.05 nm @ 1.6 μm)		< 0.5 nm @ 0.45 μ m, <0.05 nm @ 0.7 μ m, < 0.2 nm @ 1.6 μ m
Swath	Discrete, 1 – 9 points	Discrete, 5 points	Selectable, 911 km (Wide Mode) or 90 km (Focus Mode)
Footprint size, nadir	10.5 km	9.7 km	Selectable, 10 km (Wide Mode) or 1 – 3 km (Focus Mode)
Pointing	±20 /±35 deg (AT/CT)	±40 /±35 deg (AT/CT) Intelligent Pointing	\pm 40 / \pm 34.4 deg (AT/CT) for Focus Mode
Other instruments	CAI (Cloud and Aerosol Imager)	CAI-2 (Cloud and Aerosol Imager 2)	AMSR3 (Advanced Microwave Scanning Radiometer 3)

Recent Increase of GOSAT Whole-atmosphere CH₄ Concentration

https://www.gosat.nies.go.jp/en/recent-global-ch4.html

Year	Annual Mean (ppb)	Annual Increase (ppb)	
2010	1756	-	
2011	1768	12	
2012	1770	2	
2013	1776	6	
2014	1786	10	
2015	1792	6	
2016	1803	11	
2017	1811	8	
2018	1821	10	
2019	1831	10	
2020	1840	9	
2021	1857	17	
2022			

Year	Jan - Sept Mean (ppb)	Jan - Sept Increase (ppb)	
2019	1827	-	
2020	1834	7	
2021	1852	18	
2022	1865	13	

Press release: https://www.nies.go.jp/whatsnew/20220323/20220323-e.html, https://www.eurekalert.org/multimedia/822274

Global CO₂ and CH₄ Concentrations by GOSAT and from Shared Socioeconomic Pathways (submitted to UNFCCC's 1st Global Stocktake)

Scenario	Near term, 2021–2040		Mid-term, 2041–2060		Long term, 2081–2100	
	Best estimate	Very likely range	Best estimate	Very likely range	Best estimate	Very likely range
SSP1-1.9	1.5 degC	1.2 to 1.7 degC	1.6 degC	1.2 to 2.0 degC	1.4 degC	1.0 to 1.8 degC
SSP1-2.6	1.5	1.2 to 1.8	1.7	1.3 to 2.2	1.8	1.3 to 2.4
SSP2-4.5	1.5	1.2 to 1.8	2.0	1.6 to 2.5	2.7	2.1 to 3.5
SSP3-7.0	1.5	1.2 to 1.8	2.1	1.7 to 2.6	3.6	2.8 to 4.6
SSP5-8.5	1.6	1.3 to 1.9	2.4	1.9 to 3.0	4.4	3.3 to 5.7

GOSAT whole-atmosphere mean CO_2 and CH_4 concentrations can be indicators of which emission scenario the real-world greenhouse has emissions are close to.

GOSAT-2 XCO2/XCH4/XCO Monthly Maps: East/Southeastern Asia and Oceania in 2020

GOSAT-2 XCO2/XCH4/XCO Monthly Maps:

East/Southeastern/South Asia in April, August, and December 2020

GOSAT-GW TANSO-3 Observation: Wide Mode and Focus Mode

Focus Mode for Megacity scale observation

Wide Mode for Country or sub-continental scale observation

C40 Top22 cities

TCCON sites

Summary

- Japan will continue to provide validated spaceborne GHG concentration data from 2009 to 2030 (and beyond).
- Japan is and will be collaborating with other satellite, ground-based, ship, and aircraft observation
 operators to keep the quality and the continuity of the data.
- ✓ What are the bottlenecks in today's observation system you encountered in terms of developing climate observation networks (Topic 1, Cluster 1 & 2)
 - => Available (quality-controlled) ground-based column-GHG validation sites are limited and their geographical distribution is not at all homogeneous. Few sites exist near emission sources.
 - => Quality controls of global dataset are insufficient.
 - => Methodologies / protocols to estimate emissions from satellite data are still immature.
- ✓ Which are the most urgent yet feasible actions for improving the situation?
 - => Establish a strategy to maintain and increase ground-based GHG validation sites.
 - => MIP involving various stakeholders (data providers and modelers)
- ✓ Your vision for the future: By 2050, I imagine GCOS to
 - ...Witness the decreasing or stabilized trends of atmospheric GHG concentrations...

Contact

matsunag@nies.go.jp

Website

https://www.nies.go.jp/soc/en/ (Satellite Observation Center)

https://www.gosat.nies.go.jp/en/ (NIES GOSAT Project)

https://www.gosat-2.nies.go.jp (NIES GOSAT-2 Project)

https://gosat-gw.nies.go.jp/en/ (NIES GOSAT-GW Project)

GOSAT and GOSAT-2 standard products are freely available from

GOSAT Data Archive Service (GDAS: L1B, L2, L3, L4)

https://data2.gosat.nies.go.jp

GOSAT-2 Product Archive (L1B, L2, L4)

https://prdct.gosat-2.nies.go.jp/

In 2023 or later, GOSAT-GW TANSO-3 standard products will be freely available from

GOSAT-GW TANSO-3 Product Archive (G3PA: L1B, L2)

(URL: TBD)

