Multi-Messenger Astronomy

with Neutrinos

Anna Franckowiak Neutrino 2016, London 4.7.2016

MeV Neutrinos from SN1987A

The Neutrino Cosmic-Ray Connection

Neutrino Production Processes

Hadronuclear (e.g. star burst galaxies and galaxy clusters)

$$pp \rightarrow \left\{ \begin{array}{l} \pi^{0} \rightarrow \gamma \gamma \\ \pi^{+} \rightarrow \mu^{+} v_{\mu} \rightarrow e^{+} v_{e} v_{\mu} \overline{v}_{\mu} \\ \pi^{-} \rightarrow \mu^{-} \overline{v}_{\mu} \rightarrow e^{-} \overline{v}_{e} \overline{v}_{\mu} v_{\mu} \end{array} \right.$$

Photohadronic (e.g. gamma-ray bursts, active galactic nuclei)

$$p\gamma \rightarrow \Delta^{+} \rightarrow \left\{ \begin{array}{l} p \ \pi^{0} \rightarrow p \ \gamma \ \gamma \\ n \ \pi^{+} \rightarrow n \ \mu^{+} v_{\mu} \rightarrow n \ e^{+} v_{e} \ \overline{v}_{\mu} \ v_{\mu} \end{array} \right.$$

Gamma-rays are not exclusively produced in hadronic processes

Neutrino Production Processes

First Detection of High-Energy Astrophysical Neutrinos

See talk by M. Kowalski

Origin still unknown

IceCube Coll., Science 342, 2013 PRL 113, 101101 (2014)

Gamma-ray background disfavors pp Neutrino Sources

Starburst galaxies contribute less than 30% to the diffuse neutrino flux

Bechtol et al. arXiv:1511.00688

The Multi-Messenger Ansatz

No significant cluster of neutrinos found: Neutrinos alone do not (yet) reveal a source

ANTARES ApJ 786 2014

IceCube presented at ICRC 2015

No significant cluster of neutrinos found: Neutrinos alone do not (yet) reveal a source

If we know WHERE and/or WHEN to look we can increase our sensitivity

No significant cluster of neutrinos found: Neutrinos alone do not (yet) reveal a source

If we know WHERE and/or WHEN to look we can increase our sensitivity

Electro-magnetic data can tell us WHERE and/or WHEN

Blazars

IceCube Collaboration (arXiv: 1502.03104): Contribution from blazars to diffuse flux < ~20%

See talk by M. Kowalski

Blazars

IceCube Collaboration (arXiv: 1502.03104): Contribution from blazars to diffuse flux < ~20%

See talk by M. Kowalski

P. Padovani & E. Resconi et al. MNRAS, 457, 3582 (2016) find correlation with bright high-frequency peaked blazars (1.3% chance prob.), suggest 10-20% contribution to diffuse flux.

Blazar Flares

- Gamma rays tell us WHERE and WHEN
- Major outburst of FSRQ PKS B1424-418 occurred in temporal and positional coincidence PeV neutrino
- 20102010.52012.520132013.52012011.20122.5 $F_{100-300000 MeV} [10^{-6} cm^{-2} s^{-1}]$ 1.50.555600 55800 56000 56200 56400 5520055400 56600 MJD
- > 5% chance coincidence

Constraining the Possible Neutrino Spectra of High-Fluence Blazars with ANTARES

- Point-source search with 406-days of ANTARES data at position of PKS B1424-418
 - Flux limit (90% CL): 4.2×10⁻⁸ GeV cm⁻² s⁻¹
 - very steep neutrino spectrum excluded

Coll. presented at ICRC 2015

Gamma-Ray Bursts (GRBs)

Extremely large energy release on the typical time-scale of ~100 sec

Gamma rays and Xrays tell us WHERE and WHEN

4 years of IceCube Northern sky data correlated with 506 GRBs

Searches for neutrinos from GRBs with ANTARES (see poster S. Celli, P2.001)

See also: R. Maunu P2.013

IceCube Coll., ApJ 805, 2015

Gamma-Ray Bursts (GRBs)

Extremely large energy release on the typical time-scale of ~100 sec

Gamma rays and Xrays tell us WHERE and WHEN

4 years of IceCube Northern sky data correlated with 506 GRBs

Searches for neutrinos from GRBs with ANTARES (see poster S. Celli, P2.001)

See also: R. Maunu P2.013

GRBs contribute less than 1% to observed diffuse neutrino flux. Potential large population of nearby low-luminosity GRBs not constrained.

GRBs / Supernovae (SNe)

Ando & Beacom, PRL 95 (2005)

GRBs / Supernovae (SNe)

Ando & Beacom, PRL 95 (2005)

Optical Follow-Up

ANTARES JCAP 1602 (2016) Ackermann et al.arXiv:0709.2640 IceCube A&A 539, A60 (2012)

Thomas Kintscher and IceCube Coll. 2016 J. Phys.: Conf. Ser. **718** 062029

Optical Follow-Up

Ackermann et al.arXiv:0709.2640 IceCube A&A 539, A60 (2012) Thomas Kintscher and IceCube Coll.

2016 J. Phys.: Conf. Ser. **718** 062029

Optical Follow-Up

Ackermann et al.arXiv:0709.2640 IceCube A&A 539, A60 (2012)

Thomas Kintscher and IceCube Coll. 2016 J. Phys.: Conf. Ser. 718 062029

Optical, X-ray, Radio and Gamma-Ray Follow-Up

X-ray (Swift)

IceCube A&A 539, A60 (2012) Thomas Kintscher and IceCube Coll. 2016 J. Phys.: Conf. Ser. **718** 062029

Expected EM Counterparts

Real-time Search for Neutrinos and TeV flare Correlation

- > Aiming for detection of flaring sources on time scales of up to 3 weeks
- Follow-up with MAGIC, Veritas, (HESS)
- Predefined source list
 - Bright, hard and variable GeV gamma-ray sources
 - 180 sources: mostly blazars

Posters by D. Gora P2.085, F. Schüssler P2.010

Most significant alert: Nov. 9th 2012

6 events in 4.2 days, followup by VERITAS Log10(p-value) = -4.46 (not corrected for trials)

DESY

Thomas Kintscher and IceCube Coll. 2016 J. Phys.: Conf. Ser. **718** 062029

IceCube Optical Follow-up Program: Supernova Detection

- Sensitive to short bursts of neutrinos (<100sec)</p>
- PTF12csy, a very bright supernova type IIn at 300 Mpc
- Coincident with the most significant neutrino alert (two neutrinos detected only 1.6 s apart)
- > Chance probability 1.6%
- Supernova 150 days old at time of neutrino detection

IceCube & PTF Coll. ApJ, 811 (2015)

ANTARES Optical / X-ray Follow-up: ANT150109A

- Single Neutrino at 60 TeV
- Triggered optical (MASTER, Tarot, Zadko) and Xray observations (Swift)
- > Variable X-ray source found \rightarrow ATel 7987
- Follow-up observations identified source as a variable star

DESY

ANTARES Coll., presented at AMON workshop 2015

Anna Franckowiak | Multimessenger Astronomy with Neutrinos | 4.7.2016 | Page 26

ANTARES Optical Follow-up: ANT150109A (ATel 7987/ GCN 18231)

> Neutrinos

- IceCube: ATel 8097
- Optical
 - Pan-STARRS: ATel 7992, 8027
 - SALT: ATel 7993
 - NOT: ATel 7994 GCN18236
 - WiFeS: ATel 7996
 - CAHA: ATel 7998, GCN18241
 - MASTER: ATel 8000 GCN18240
 - LSGT: ATel 8002
 - NIC: ATel 8006
 - ANU: GCN18242
 - GCM: GCN18239
 - VLT/X-shooter

- > X-rays
 - Integral: ATel 7995
 - MAXI: ATel 8003
 - Swift: ATel 8124, GCN18231
- Radio
 - Jansky VLA: ATel 7999, 8034
- > Gamma-rays
 - MAGIC: ATel 8203
 - Fermi-GBM: GCN18352
 - HAWC
- HESS Great interest by astro-community

ANTARES follow-up – Search for GRB counterpart

Fast reaction by follow-up instruments are required to detect rapidly declining GRB afterglow

ANTARES JCAP 1602 (2016)

IceCube HESE Track Events now Public ICECUBE-160427A

- High-Energy Starting Events (HESE) Tracks (total: 4/y, signal: 1/y)
- Energy threshold ~60TeV
- > Angular resolution: 0.4-1.6 deg (50% containment), 1.2-8.9 deg (90%)
- Improved resolution available after O(h)
- First alert: April 27th 2016

Through-going muon events (EHE), total 4/y, signal 2/y public soon

	Time	RA	DEC	Err (50%)	Err (90%)
First direction	April 27	239.66°	6.85°	1.6°	8.9°
Updated direction	April 29	240.57°	9.34°		0.6°

Poster by K. Jero P2.012

Followup of First Public HESE Event (GCN 19381)

Optical

- IPTF (GCN 19392) 3 transients, all AGN
- Master (GCN 19362) no detection
- Pan-STARRS (GCN 19381) 7 supernovae candidates

> Gamma-ray

- IPN (GCN 19426) no detection
- Fermi-LAT (GCN 19360) 5 unrelated blazars
- Fermi-GBM (GCN 19364) no detection
- FACT (GCN 19427) no detection
- Veritas (GCN 19377) no detection
- HAWC (GCN 19361) no detection
- MAGIC (see poster by D. Gora P2.085)

Astrophysical Multimessenger Observatory Network (AMON)

http://amon.gravity.psu.edu Smith et al., Astropart. Phys., 45 (2013)

Anna Franckowiak | Multimessenger Astronomy with Neutrinos | 4.7.2016 | Page 31

Conclusion

Neutrinos are

- unique messengers for from the high-energy universe
- the smoking gun signature for the origin of high-energy cosmic rays
- First astrophysical high-energy neutrinos detected
 - Source still unknown
- Multi-messenger analysis helps to increase sensitivity
 - Some source classes are excluded / disfavored
 - Remaining source classes studied extensively
- New neutrino real-time channels available
 - Distribution of alerts through AMON

Stay tuned!

Backup

Ice/Water Cherenkov Neutrino Detectors

ANTARES

See talk by A. Kouchner

Volume: 1 Gton Energy threshold: 100 GeV

See talk by M. Kowalski

Volume: 10 Mtons Energy threshold: 10 GeV Volume: 100 ktons Energy threshold: 10 GeV

Baikal

100 m

1170 m

1240 m

1310 m

📥 1367 m

Gravitational Waves and Neutrinos

Search for neutrinos from GW150914 in ANTARES and IceCube data \rightarrow no counterpart found

Neutrino could help to constrain direction and teach us about the GW source environment

See talk by Imre Bartos

Neutrinos and UHE Cosmic-Rays

Correlation of IceCube neutrinos with UHE cosmic-rays (E>50 EeV) from Auger and Telescope Array

No significant correlation found

IceCube Coll. JCAP01 (2016) 037

Limits on Chocked Jet Supernova Models

Core-collapse SNe (CCSN) with Jets, Ando & Beacom PRL 95, 2005

Model parameters:

- Rate of CCSN with jets ρ
- Jet energy E_{iet}
- Lorentz boost factor Γ

Search for Neutrinos from X-ray Binaries with ANTARES

Anna Franckowiak | Multimessenger Astronomy with Neutrinos | 4.7.2016 | Page 39

Antares Coll., presented at ICRC 2015

Constraints on pp Sources from Gamma-Ray Background

Starburst galaxies disfavored

Bechtol et al. arXiv:1511.00688

ANTARES constrains a blazar origin of two IceCube PeV neutrino events

- TANAMI Coll.: six bright, variable blazars found positionally coincident with two of the most energetic IceCube events (Krauss et al. A&A 566 2014)
- > ANTARES: search for neutrinos from 6 suggested blazars in 6 years of data → relevant constraints on spectral index of potential source

ANTARES, A&A Lett. 576, 2015

Blazars

electrons in the jet

DESY

Blazars

IceCube Coll., arXiv:1502.03104

Anna Franckowiak | Multimessenger Astronomy with Neutrinos | 4.7.2016 | Page 43

Gamma-Ray Bursts (GRBs)

Gamma rays and X-rays tell us WHERE and WHEN

Blazars

> Hint for correlation of extreme blazars and high-energy neutrinos

> 10-20% of diffuse flux could be produced by high frequency peaked blazars (not in tension with IceCube limit)

> Chance probability 1.3%

P. Padovani & E. Resconi et al. MNRAS, 457, 3582 (2016)