P2.019 Diffuse neutrino emission from the Galaxy above the TeV

D Gaggero¹, D Grasso², A Marinelli², A Urbano³ and M Valli⁴

¹GRAPPA, University of Amsterdam, Netherlands, ²INFN Pisa, Italy, ³CERN, Switzerland, ⁴SISSA, Italy

The Fermi-LAT measurements of the diffuse Galactic gamma-ray emission reveal a hardening of the cosmic-ray (CR) spectrum with decreasing Galactocentric radius. This result can be the signature of different CR transport properties in the inner Galaxy, and in particular a harder rigidity scaling of the diffusion coefficient.

We model this effect with the numerical package DRAGON and we provide a good description of both Fermi-LAT and MILAGRO gamma-ray data in the most relevant sky windows and local cosmic-ray measurements. We discuss the implication of such model for the Galactic neutrino emission, and we show that our scenario provides an explanation for a significant fraction of the astrophysical flux measured by IceCube above 25 TeV; moreover, we discuss how the neutrino telescopes in the Northern hemisphere (ANTARES and the future KM3NeT) will be able to confirm and constrain our picture.