P1.053 Gaseous 83mKr generator based on 83Rb deposited in zeolite

J Sentkerestiová, D Vénos and M Slezák
Nuclear Physics Institute of the CAS, v.v.i., Czech Republic

on behalf of KATRIN collaboration

The gaseous 83mKr electron source is currently used in neutrino mass experiments KATRIN and Project 8, dark matter experiments XENON, LUX and DarkSide, and ALICE (CERN) experiment.

The main attractive features of this radioactive noble gas are its monoenergetic conversion electrons with well known energies and a half-life of 1.8 h, which is short enough to avoid any long-lasting contamination of the system while the long half-life of the mother 83Rb isotope ($T_{1/2} = 86$ d) enables more time demanding measurement. Particularly, in the neutrino mass experiments with gaseous tritium in which the 83mKr is applied in the same manner as the tritium, the K-32 conversion electrons with energy conveniently close to the beta spectrum endpoint represent an important test and calibration tool.

We present the design and characteristics of the gaseous 83mKr generator for KATRIN (KArlsruhe TRItium Neutrino) experiment. Specifically 83mKr as well as possible 83Rb emanation behaviour at the generator output will be shown. Also, the 83mKr emanation for various environments of the zeolite beads will be addressed.