WEAVE and other Spectroscopic

Surveys in the Gaia era

Laboratoire Lagrange, UCA, Observatoire de la Côte d'azur, CNRS

Vanessa Hill

0 0

S (A

Surveys in the Gaia era

- Spectroscopic surveys: what for ?
- 2. Complementing Gaia: Galactic Archaeology
- **3**. WEAVE as an example of new facility coming online
- 4. WEAVE Galactic Archaeology versus other spectroscopic surveys
- **5**. A positive outlook ⁽²⁾

- Many science cases call for large scale spectroscopic surveys, among which:
- Massive galaxy redshift surveys to map the structure of the Universe ar constrain cosmology (Baryonic Acoustic Oscillations, galaxy clustering)
- A Massive galaxy surveys to probe galaxy evolution at different redshifts of to reionization (and hence different λ);
- Large QSO surveys (line of sight absorbers) for cosmology, IGM tomography, ...;
- Large stellar surveys to probe our Galaxy and stellar physics;
- Large samples of stars for planet searches

Many science cases call for large so surveys, among which:

- Massive galaxy redshift surveys to map the st constrain cosmology (Baryonic Acoustic Osc[®]
- Massive galaxy surveys to probe galaxy evolut to reionization (and hence different λ);

- Large QSO surveys (line of sight absorbers) for cosmology, IGM tomography, ...;
- Large stellar surveys to probe our Galaxy and stellar physics;
- Large samples of stars for planet searches

- Many science cases call for large scale spectroscopic surveys, among which:
- Massive galaxy redshift surveys to map the structure of the Universe ar constrain cosmology (Baryonic Acoustic Oscillations, galaxy clustering)
- A Massive galaxy surveys to probe galaxy evolution at different redshifts of to reionization (and hence different λ);
- Large QSO surveys (line of sight absorbers) for cosmology, IGM tomography, ...;
- Large stellar surveys to probe our Galaxy and stellar physics;
- Large samples of stars for planet searches

- Many science cases call for large scale spectroscopic surveys, among which:
- Massive galaxy redshift sur constrain cosmology (Bary
- Massive galaxy surveys to to reionization (and hence
- Large QSO surveys (line c tomography, BAO ...;

Mysterious Molecules in the Milky Wa

- Large stellar surveys to probe our Galaxy a
- Large samples of stars for planet searches

- Many science cases call for large scale spectroscopic surveys, among which:
- Massive galaxy redshift surveys to map the structure of the Universe ar constrain cosmology (Baryonic Acoustic Oscillations, galaxy clustering)
- A Massive galaxy surveys to probe galaxy evolution at different redshifts of to reionization (and hence different λ);
- Large QSO surveys (line of sight absorbers) for cosmology, IGM tomography, ...;
- Large stellar surveys to probe our Galaxy and stellar physics;
- Large samples of stars for planet searches : not yet on multi-object

Bullock & Johnston (2005)

hen and how did the mass of the V assemble ? Cretion-driven vs secular shaping Milky-Way a a prototype for galaxy evolution

metry : ro-photometry: roscopy:

G<21</th>Gaia π, proper motionsG<18-19</td>RP/BP stellar parametersG<15-16</td>RVS radial velocity, parametersG<12</td>RVS chemical abundances

- Complement the Gaia catalogue with accurate Vr=Vlos (& metallicity) 15<G<20.-21.
- Enrich the Gaia catalog with detailed chemistry fo
- Enlarge the volume in which Gaia transverse motion are useful (i.e. where proper motions can be turned nto velocities using distance): acquire precise stellar parameters (\rightarrow spectroscopic distances) of distant stars, where errors on I/ π kill geometrical distances.

All GAIA Sources Proper motion errors < 5km/ 10⁹ 10^{8} GAIA Stars/kpc² 10⁶ Sun Sun 105 View From Galactic Pole View From Galactic Pole

troscopic distances, turns proper motions in transverse

Side On View

Side On View

Complement the Gaia catalogue with accurate Vr=Vlos (& metallicity) I5<G<20

- Defined the LR mode of WEAVE:
- R = 5,000 in a wide range [366 606] nm + [579 959] nm
- Enrich the Gaia catalog with detailed chemistry fo
- Defined the HR mode of WEAVE:
- R = 20,000 in two windows [404 465] nm || [473 545] nm [595 685] nm
- Enlarge the volume in which Gaia transverse motion are useful: acquire precise stellar parameters (\rightarrow spectroscopi distances) of distant stars, where errors on $1/\pi$ kill geometrical

WEAVE is the first large spectroscpic survey

North to:

Complement Gaia (Galactic Archaeology) Survey distant LOFAR galaxies (WEAVE-LOFAR) Serve many other science cases: Stellar, Circumstellar, and Interstellar Physics; Gaia White Dwarfs; WEAVE-APERTIF; Galaxy Clusters; Galaxy Evolution (STEPS); QSOs

Telescope, diameter	WHT, 4.2m	
Field of view	2° Ø	
Number of fibers	960 (plate A)/940 (plate B)	
Fiber size	1.3″	
ber of small IFUs, size	20 x 11"x12" (1.3" spaxels)	
LIFU size	1.3'x1.5' (2.6" spaxels)	
solution mode resolution	5750 (3000–7500)	
solution mode wavelength coverage (Å)	3660–9590	FIBRE POSITIO
esolution mode resolution	21000 (13000–25000)	
solution mode wavelength coverage (Å)	4040–4650, 4730–5450 5950–6850	
	SPECTROGRAPH ROOM	

•

•

.

WEAVE is the last/ultimate pick & place MOS

VILAVE-UA Surveys at grance

90% of WEAVE G/ have σ_{π}/π <20% (DR2)

criminate fundamental aspects of ctic disc dynamics: moving groups, city elipsoid accross the disc \rightarrow be the axisymetric potential + nonmetric terms (bar, spiral arms).

or a total of ~1.1 10⁶ stars >Red Clump stars in the inner disc (ID and MD) (colour-magnitude select down to r<=19: Giants in the outer disc (Gaia Ma selected) to G<=18

- e-area survey = red area survey" deg^2, Down to r = 20-21 bined with cosmological VS (LOFAR, QSOS)
- rs: MSTO and giants + BHB/ and EMP stars (from Pristine)

Halo: ~1-2.10⁵ halo giants out to ~100kpc; ~3.5.10⁵ halo MSTO t ~30kpc; ~4.10⁴ BHB and EMP candidates +Thick disc: ~6x10⁵ st

nted survey:

- deg² w 4h/pointing
- own streams and
- varf galaxies
- Its down to r = 21, repeated

- alaxy mass, potential; halo shape, umpiness
- our halo all built up from
- sembling small sub-systems? ;
- ow much "in-situ" formed halo
- nd from what origin (heated disc, nooth gas accretion, ...) ?

Jean-Baptiste & di Matteo2017

ost merger traces found D[10-30]kpc, but all mixed in "sky views

lusters as probes of the galactic disc (gradients at different ages, etc...), wi

- ecial care about covering the parameter space (galactocentric radius, age, etallicity)
- ormation of clusters; Star formation

VILAVE-UA Surveys at grance

Telescope	Diameter (m)	FoV (deg ²)	Etendue (m².deg²)	
vlt – flames / Moons	8.0	0.136	6.63	Spectro VIS/NIR
Subaru - PFS	8.0	1.33	64.7	Spectro VIS
LSST	8.2	9.6	320	imaging
MSE	11.2	1.5	151	Spectro VIS
SDSS (SEGUE/BOSS/ eBOSS, APOGEE, SDSSV)	2.5	7.0	20.9	imaging+spectro VI NIR
PanSTARRS – I	1.8	7.0	12.9	imaging
BlancoDECAM – DES	4.0	3.0	28.5	imaging
Mayall - DESI	3.8	8.0	77	Spectro VIS
WHT - WEAVE	4.2	3.14	38.3	Spectro VIS
VISTA – 4MOST	3.7	4.0	38.3	Spectro VIS
AAT - GALAH	3.9	3.14	13.9	Spectro VIS

Etendue (collecting surface x field of view) is one of the metrics to compare different facilities, tracing the efficiency of a survey to achieve a given depth on an area on the sky.

Telescope	Diameter (m)	FoV (deg ²)	Etendue (m².deg²)	
vlt – flames / Moons (ges/ Moons)	8.0	0.136	6.63	Spectro VIS/NIR
Subaru - PFS	8.0	1.33	64.7	Spectro VIS
MSE	11.2	1.5	151	Spectro VIS
SDSS (SEGUE/BOSS/ eBOSS, APOGEE, SDSSV)	2.5	7.0	20.9	spectro VIS/NIR
Mayall - DESI	3.8	8.0	77	Spectro VIS
WHT - WEAVE	4.2	3.14	38.3	Spectro VIS
VISTA – 4MOST	3.7	4.0	38.3	Spectro VIS
AAT - GALAH	3.9	3.14	13.9	Spectro VIS
LAMOST	4	5	<=30	Spectro VIS

For spectrographs, also crux are :

- the nb of spectra obtained in each FoV
- spectral resolution that drive Vrad precision, and chemical information
- The spectral coverage (blue, visible, NIR), that drive chemical information

the Milky-Way !

- North, visible: WEAV DESI, LAMOST
- South, visible: 4MOST GALAH, GES, RAVE
- Both hemispheres an NIR: APOGEE, SDSS\ MWM
- Point size = Resolution (1800 to 28,000)

WEAVE-HR: complementary to GALAH and 4MOST-HR (hemisphere); APOGEE ver different elemental abundances accessible and tracers WEAVE-LRhighat: 4MOST complementary (hemisphere); DESI will have many more s but shallower (>=1 mag)

 European MOS go deeper (site + Res. for GALAH; exptime for DESI; telescope for APOGEE vs MOONS)

- Complementarity: hemisphere.
- comparable area (4MOST 10,000deg² WEAV

synergy with Gaia:

- Ideally, we'd want to be able to use all together !! This implies:
- Homogeneity / means to cross-calibrate:
 - Most in the optical (SEGUE, RAVE, LAMOST, GALAH, WEAVE, DESI, 4MOST, PI MSE...); but also in the NIR (APOGEE, MOONS, ...)
 - Different resolution regimes: R<2,000; R~5,000; R~20,000
 - Analysed independantly, with different methods
 - Target selection need to be tractable in all surveys !

mplementarity North/South

to access different regions of the disc

OUTIOOK...

- Large spectroscopic surveys are a golden mine for a student starting a PhD or early-career researcher
 - Large data sets, obtained in controlled way (target selection procedures, quality assurance on data products)
 - \checkmark Main-stream and niche science
 - Lots of room for methodological developments (incl. machine learning, ...) !
 - \checkmark Rich collaborative environments.
- For Galactic Archaeology, the combination of Gaia +