Transient surveys
&
Gravitational Wave follow-up

Danny Steeghs
University of Warwick

Long history of surveys

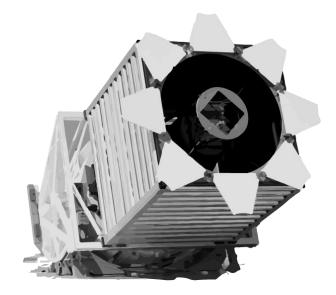
Sky surveying a long standing tool:

- plate surveys (still a great resource)
- CCD era surveys
- time-domain aspects

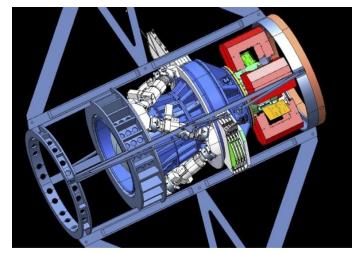
Key eras in time-domain surveys:

- Variable stars

[OGLE, SDSS, VST surveys]

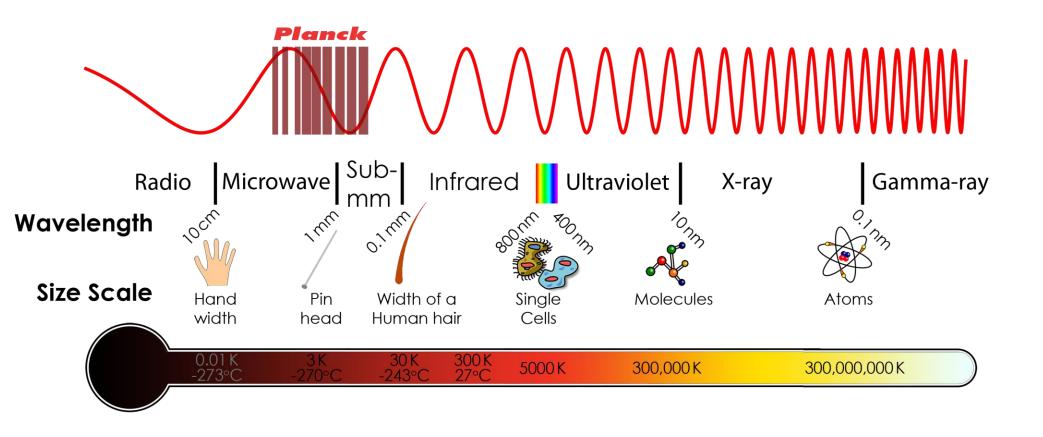

- SN cosmology

[SNF, (i)PTF, SLS, DES]

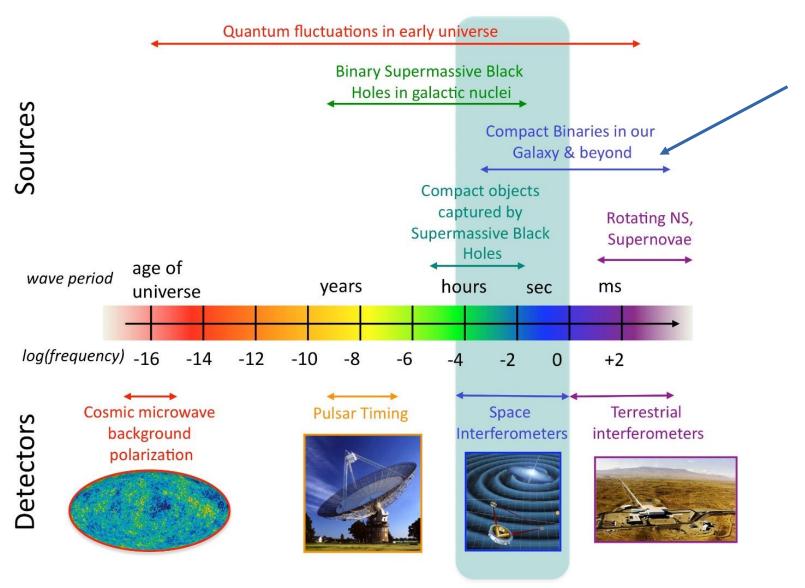

- exotic and explosive events (GRBs, TDEs)
- Asteroids and NEOs

[CRTS , ATLAS, Pan-Starrs]

- Now *Gravitational Wave follow-up* has become a main driver

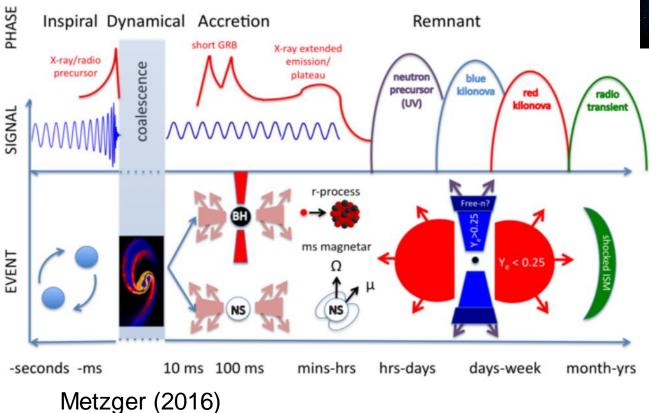

SDSS

DECAM


Multi-wavelength Astronomy

Lots of amazing missions and facilities coming that jointly will offer all-sky data across the EM spectrum

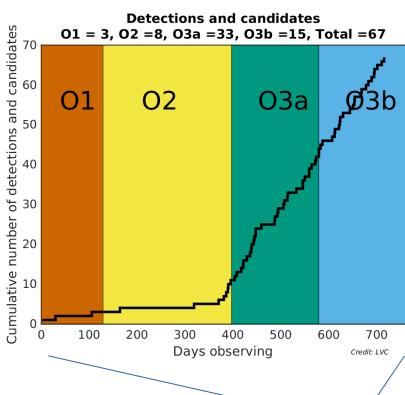
Spectrum of gravitational waves



Powering EM emission

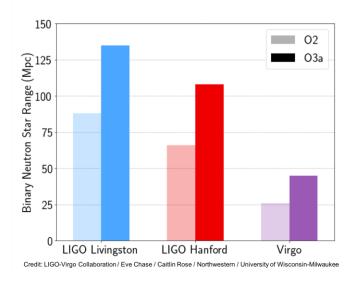
Binary Neutron Star merger events were considered (and still are) the main multi-messenger type of events thanks to a disruptive merger process with key ejecta components


Lots of astrophysics here:

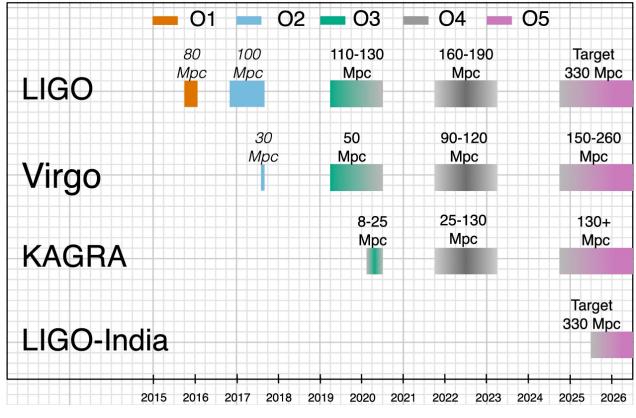

- compact objects & stellar evolution
- relativistic outflows
- formation of the elements
- BH formation

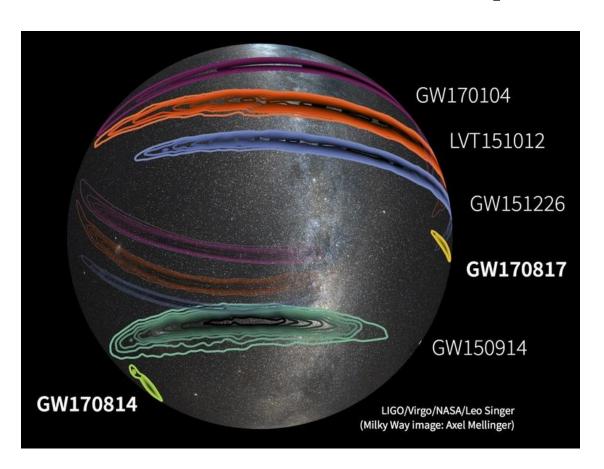
·

GW: it took some time



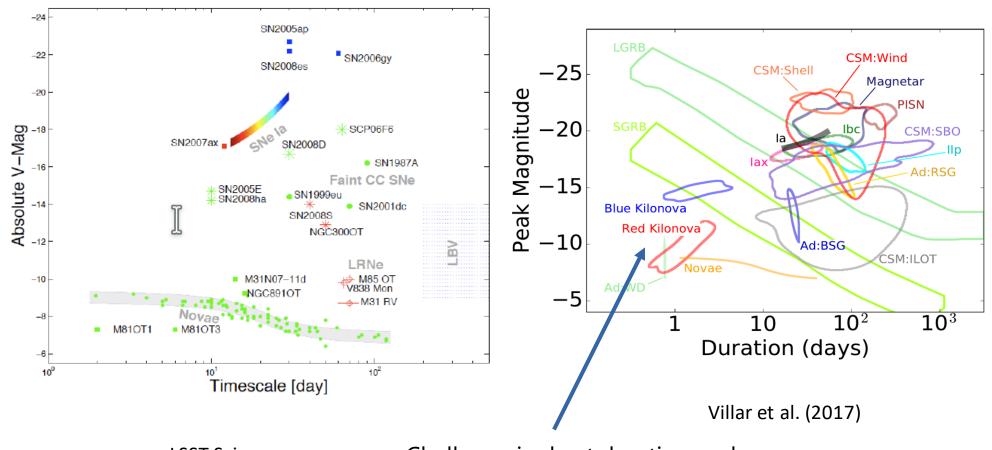
1915 2015-2020


GW detector network


Currently into first few seasons with advanced arrays

Abbott et al. (2020)

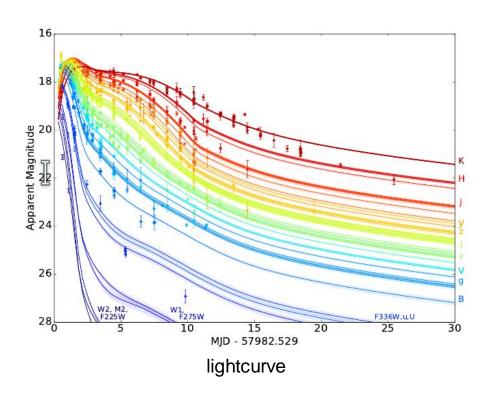
GW follow-up challenge


- We have short-lived EM signals, particularly in optical
- We have limited sky **localisation** information
- We have a tremendous amount of foreground

(The bigger the area, the harder it is)

Transient Phase Space

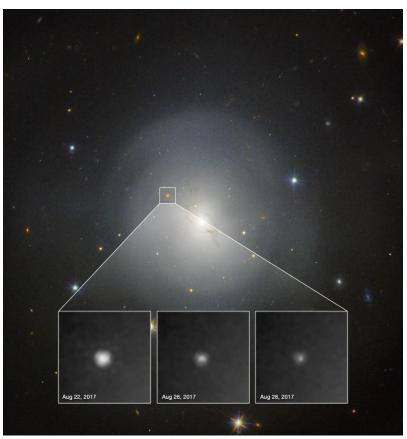
I will here focus on optical transient searches in connection with GW followup of binary merger events involving neutron stars

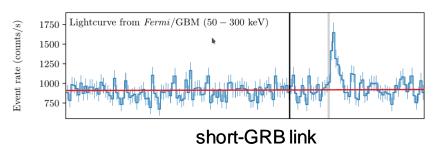


LSST Science Handbook

Challenge is short duration and moderate luminosity

Gemstone BNS: GW170817

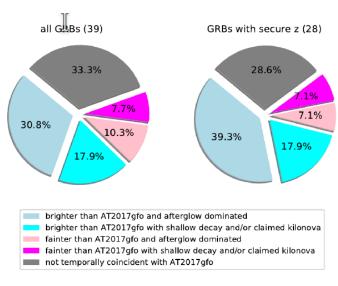



What a treat it was!

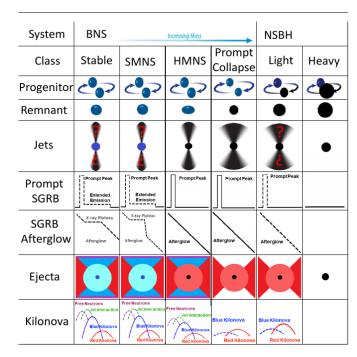
Nice Review:

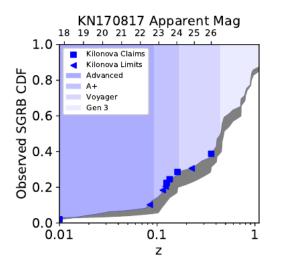
Margutti & Chornock (2020) arXiv:2012.04810

kilonova



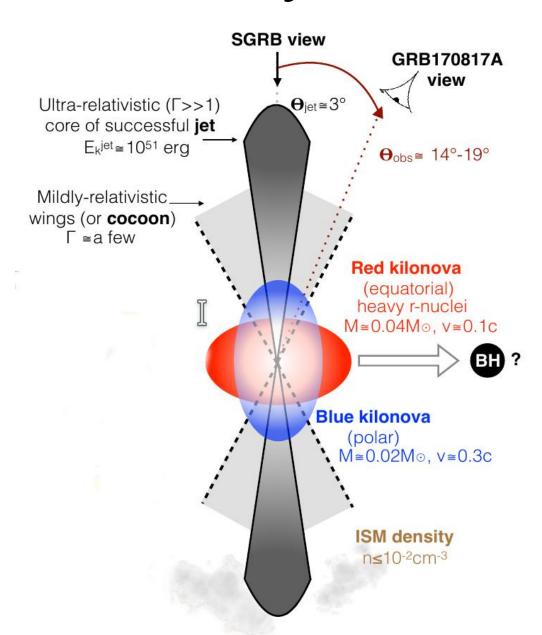
Short-GRB constraints




1 excellent datapoint, but diversity expected

For now best constraints from (possible) Kilonova signals in short-GRBs

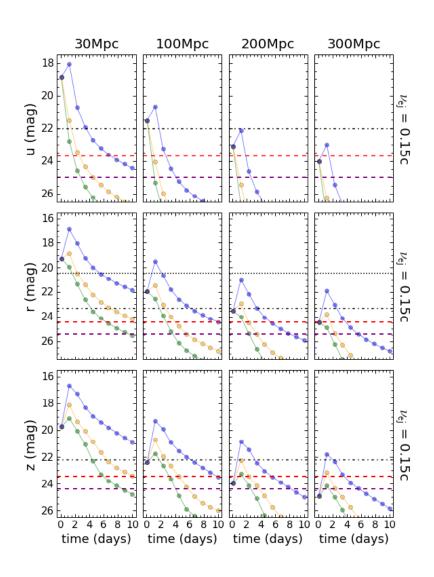
Rossi et al. (2019)



Burns (2020)

BNS ejecta and **EM** emission

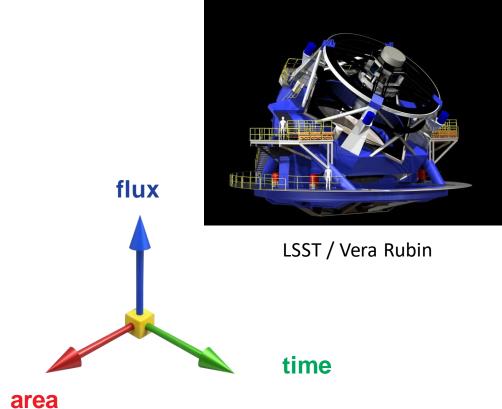
Key parameters:


- Mass and velocity of components
- Collimation of ejecta
- Observer line of sight

Hard:

Radiation transport & nuclear physics

Need samples, rates, ...



Only just the beginning

- Rates maybe not as high as we thought
- Diversity
- Many events not as cooperative
- So again patience is required and a systematic approach
- Need facilities that can search quickly, with sufficient sensitivity and being able to cover substantial areas

Alternative Approaches

ASAS-SN

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

The University of Manchester

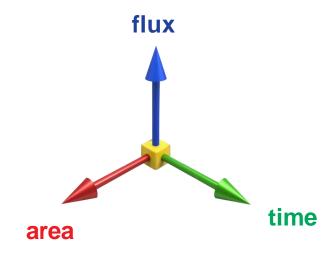
MONASH University

GOTO origins

Key motivations:

Specifically designed for wide, rapid response searches of exotic transients and GW-EM in particular

Wide area capability to sufficient depth


Aim to catch counterparts early to allow follow-up with other facilities

Complements other facilities both geographically and its balance between cadence and depth

Need to deploy it timely, cost effectively

Needs autonomous control & automated pipeline

[this was all before any actual GW detection, let alone multi-messenger]

- patrol all-sky
- reach BNS horizon
- good cadence
- control false positives

GOTO design (around 2014)

WARWICK

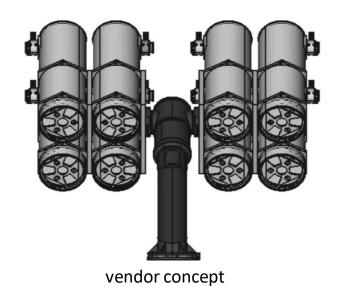
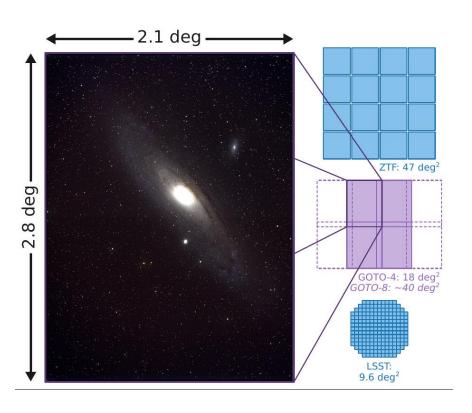
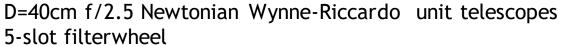
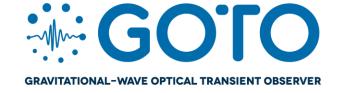

- Pixel scale key in balance between field and depth
- 1-2" pixels good compromise at good site (sky)
- Biggest constraint: affordable detector pixels

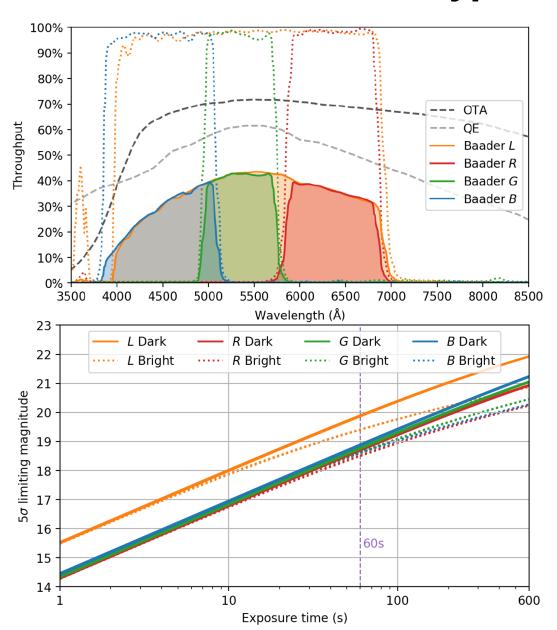
Figure 1. KAF-50100 Full Frame CCD Image Sensor

- Cost of telescope sensitive to aperture
- Co-mounting of multiple telescopes on shared mount
- 30-40cm aperture feasible, require f/2.5 for pixel-scale
- 4-8 telescopes per mount feasible



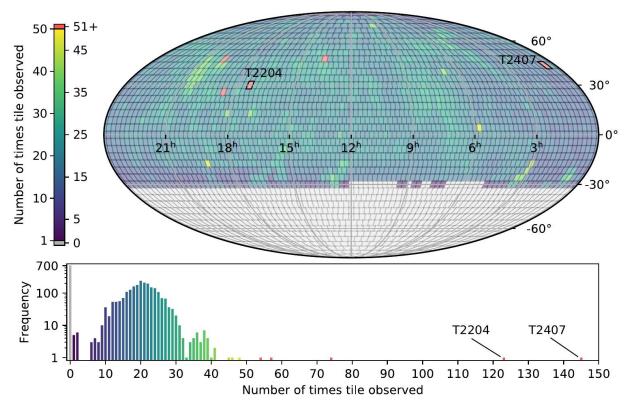

full node with multiple mounts


GOTO Prototype (2017)



2.85 x 2.114 degrees @ 1.25"/pixel (50 Mpixel CCD) ~5 sqr.deg / telescope

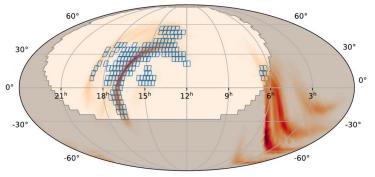
GOTO Prototype Performance



Prototype Operations

- Fixed sky grid survey with 4UTs
- Many O3 GW events observed (Steeghs et al. 2019; Gompertz et al. 2020; Ackley et al. 2020)
- High-cadence tiles
- GRB/neutrino follow-up
- SNe

Fully autonomous control & Real-time dataflow:



- Shutter open within 30s from trigger
- Data processed within 10 mins
- Diff. Imaging candidates within 30mins

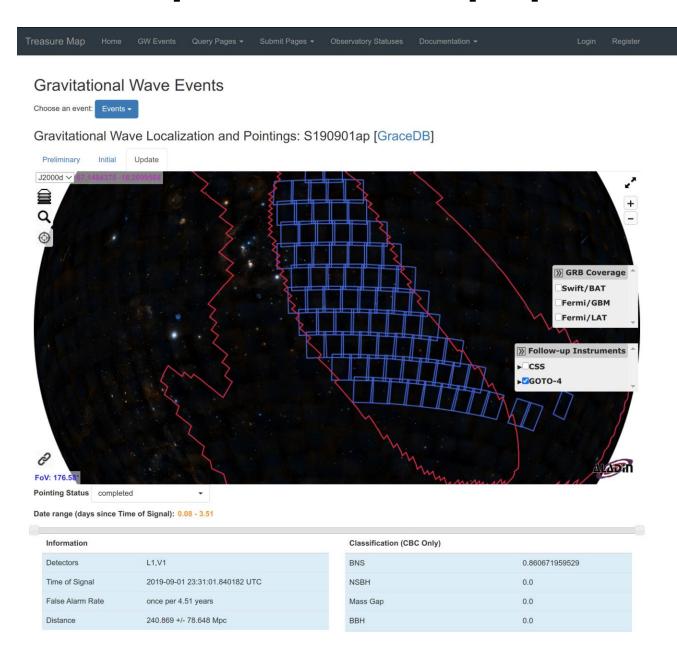
GOTO Prototype in O3

	Respon	se Time	2D	2D Coverage				
Event	$\delta t_{ m trig}$	$\delta t_{ m alert}$	Area	pA	$pA_{ m vis}$			
	(hours)	(hours)	$(\mathrm{deg^2})$	(%)	(%)			
$S190408an^{\dagger}$	11.4	10.8	156.1	20.2	23.8			
$S190412m^{\dagger}$	15.0	14.0	295.2	94.4	94.7			
S190421ar	48.3	29.1	114.3	8.88	36.6			
S190425z	12.4	9.50	2667.1	22.0	38.1			
S190426c	5.30	5.00	772.7	54.1	70.2			
S190510g	1.42	0.40	116.1	0.21	0.55			
S190512at	2.78	2.50	315.1	87.1	92.4			
$\mathrm{S}190513\mathrm{bm}^\dagger$	0.55	0.05	116.2	28.5	76.3			
$\mathrm{S}190517\mathrm{h}^\dagger$	15.9	15.2	112.7	14.8	51.6			
$\mathrm{S}190519\mathrm{bj}^\dagger$	5.35	4.35	664.8	84.7	85.3			
S190521g	0.13	0.05	393.2	43.7	86.7			
$\mathrm{S}190521\mathrm{r}^{\dagger}$	15.2	15.1	720.7	91.9	92.9			
S190630ag	2.40	2.40	1170.3	60.9	79.5			
S190706ai	0.33	0.03	543.9	36.7	48.5			
S190707q	12.4	11.7	722.9	34.4	59.3			
$\mathrm{S}190718\mathrm{y}^\dagger$	6.58	6.10	242.5	61.2	72.9			
S190720a	0.08	0.04	1358.3	62.1	73.3			
S190727h	15.0	14.9	714.7	42.3	93.5			
S190728q	14.8	14.5	146.9	89.5	94.0			
S190814bv	1.83	1.50	717.9	94.1	99.1			
S190828j	16.1	15.8	442.2	9.11	81.6			
S190828l	16.9	16.5	453.6	1.94	50.5			
S190901ap	0.12	0.04	2523.5	38.3	45.3			
S190910d	0.13	0.03	1675.0	41.2	85.1			
S190915ak	29.9	29.8	18.2	0.08	0.08			
$S190923y^{\dagger}$	13.8	13.7	723.7	39.4	59.7			
S190924h	2.97	2.90	281.3	70.2	73.1			
S190930s	6.28	6.20	2139.9	92.2	92.2			
$\rm S190930t^{\dagger}$	12.8	12.7	918.2	6.84	9.91			
Mean	9.90	8.79	732.3	45.3	64.4			
Median	6.58	6.20	543.9	41.2	73.1			

Part of a world-wide effort

GOTO prototype was playing to its strength of searching wide areas

Mean area was 732 sqr. deg.

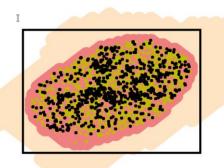

Searched binary BHs as well to test and tune strategies/operations

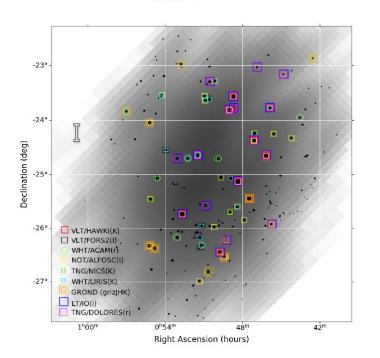
Alas no GW170817-like trigger

Gompertz et al. (2020) Cutter (2021)

http://treasuremap.space/

O3: S190814bv



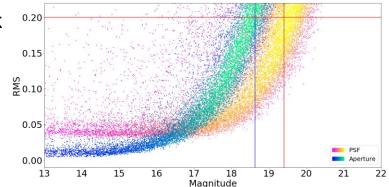

S190814bv - Sky Localization and Coverage

Pan-STARRS ATLAS and VST ATLAS FoV: 5.4°x5.4° - PS1 Skycell: 0.4°x0.4° -20° VST FoV: 1°x1° -20° -25° Dec (ICRS) -30° -35° -35° 1^h30^m 0^h30^m 2^h00^m 1^h40^m 20m GOTO VISTA GOTO FoV: 3.7°x4.9° VISTA FoV: 1.5°x1.2° -20° -20° -25° -30° -35° -35° 20°x18° 2^h00^m 0h30m 2^h00^m 1^h40^m R.A. (ICRS) R.A. (ICRS) LALInference (90%) BAYESTAR (90%)

ENGRAVE; Ackley et al. (2020)

Galaxy targeting

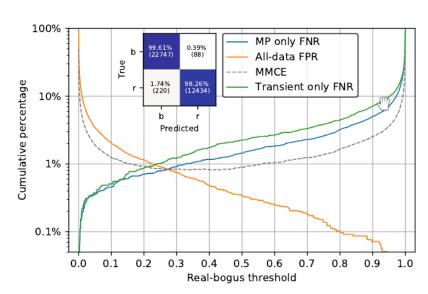
Technical Developments



Having to deal with the same challenges as other time-domain projects

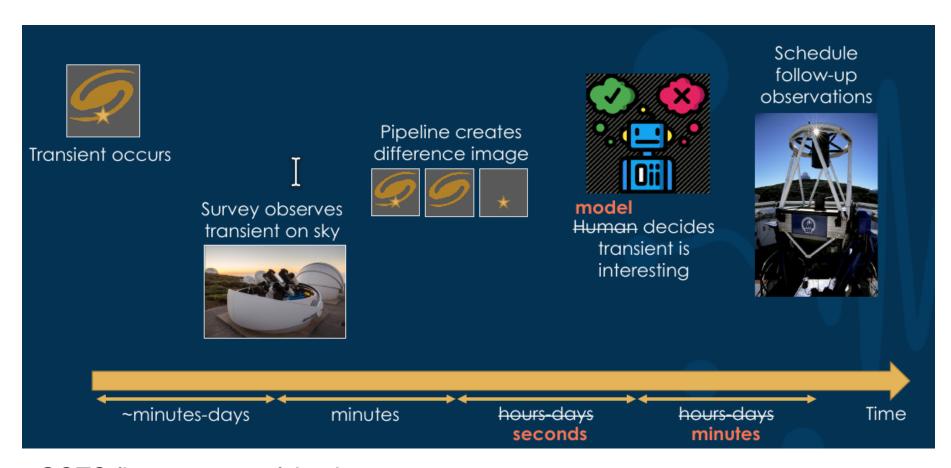
Pipeline: in-house bespoke stack versus the LSST stack

GOTO as testbed for Vera Rubin ST data reduction:


Mullaney et al. (2020); Makrygianni et al. (2020)

Real-Bogus classifier:

Bayesian CNN


Killestein et al. (2021)

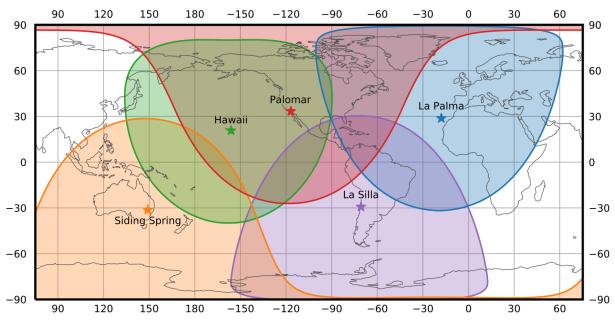
Marshall / Brokers / Contextual Agents / Astrophysical Classification / Foreground

Automation for speed

GOTO flow courtesy of Joe Lyman

GOTO vision

Full node = 16x40cm covering 80 deg² Two antipodal sites

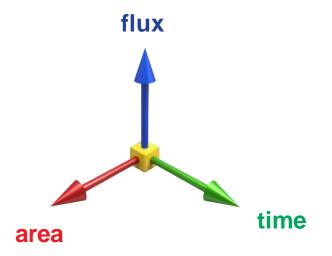

Sky survey patrol mode Responsive mode

PPRP Award late 2019

La Palma complete in 2021 Siding Spring in two phases

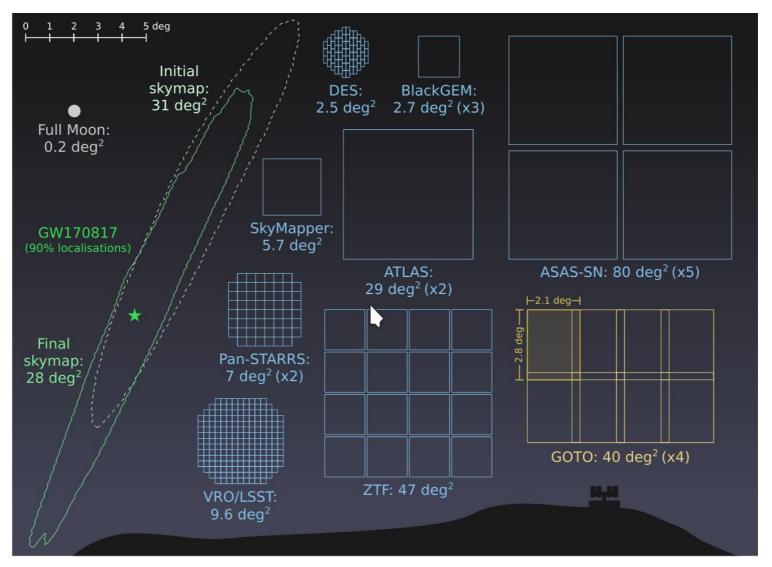
Operational ahead of O4

Global Landscape


Complements other facilities

Extends geographic coverage

Facilitates identification and follow-up


Need collaborative frame-work

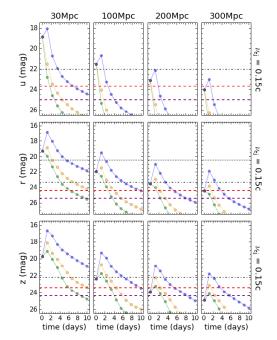
Global Landscape

flux

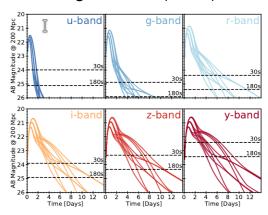
LSST

No doubt transformative facility and coming quite soon

Unprecedented depth thanks to its aperture, camera and location


Multi-colour, multi-epoch

Unprecedented data mining and follow-up challenge, too

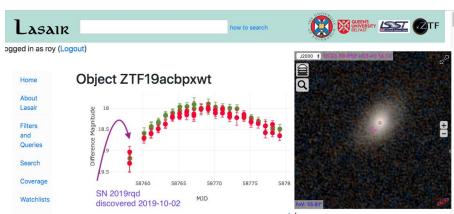

LSST and GW-EM

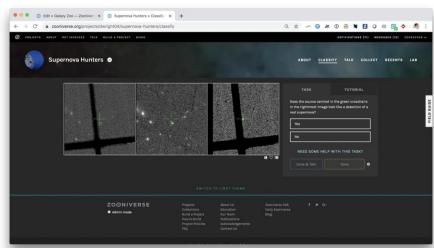
WARWICK

- In its core mode *not* optimized for GW / Target of Opportunity (cadence)
- Community has been appealing for this as it is uniquely placed to probe the more distant GW events that are out of reach of smaller projects
- Project recognizes this and negotiations are ongoing concerning survey strategy, ToO opportunities

Cowperthwhaite et al. (2018)

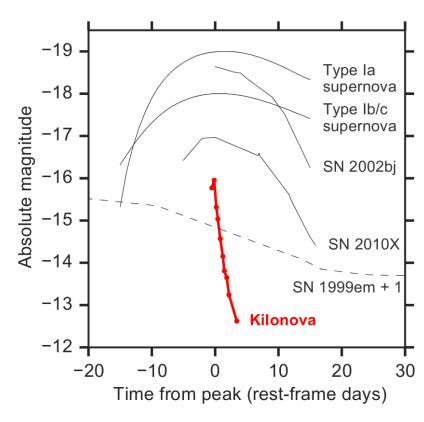
LSST-UK




Key involvement of UK community via LSST-UK

- access
- data mining tools
- expertise (both technical and astrophysical)

Lasair broker


Citizen Science

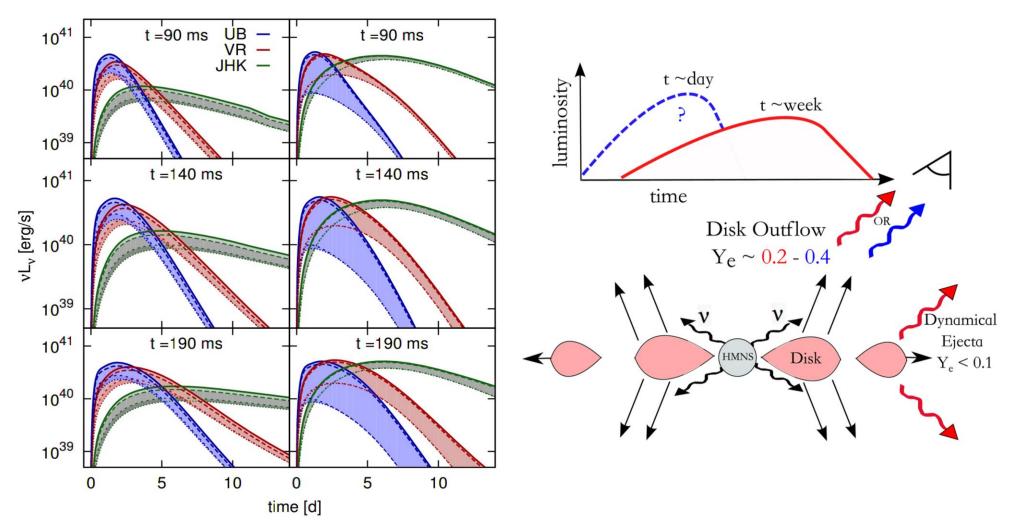
Science beyond GW follow-up

- Blind kilo-nova searches / fast transients
- Luminous transients in the SN arena
 - Early stages [need cadence]
 - Rare subset [need large area]
- TDEs
- New AGN
- Fermi & SVOM GRB triggers, particularly short
- Neutrinos from IceCube & Antares
- Pulsar binaries via Fermi cross-matches
- Radio transients
- Rapid discovery allows rapid follow-up
- Spectroscopically target early stages
- Rare bright events offer key insights

Arcavi et al. (2017)

Summary

- A great time for time-domain and multi-messenger astronomy
- GW detectors and the EM search facilities primed, with the best to come
- A long-term opportunity, with an excellent facilities roadmap
- Probes a broad variety of (astro)physics
- UK community plays a very active and leading role
 - Key partner in LIGO
 - Leads GOTO, strong role in LSST, many others, survey heritage
 - Good links with other facilities (also beyond optical/IR)
- Need systematic search capacity, but also follow-up and modelling (spectroscopy, broad SED lightcurves, host characterisation)


Thank You

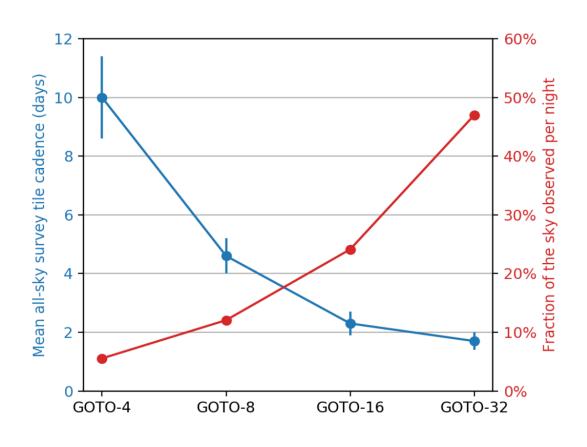
EXTRAS

Expectations

Martin et al. (2015)

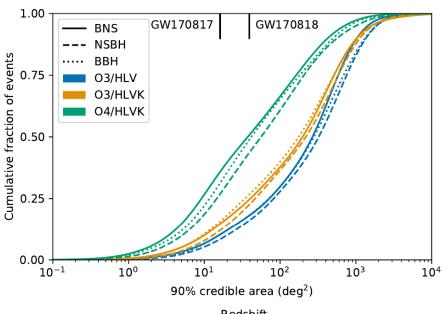
Timeline

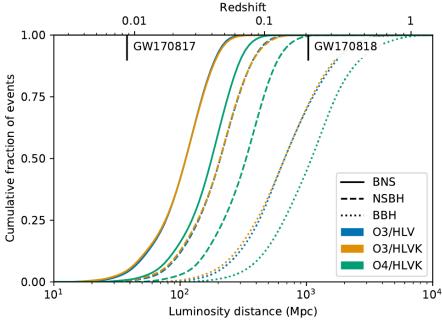
- Deployed 2nd generation unit telescopes on prototype mount
- 2nd generation mount systems at manufacturing stage
- All CCD sensors secured
- La Palma expansion to full node Q1 2021
- Siding Springs deployment Q3 2021
- Control System, pipeline & DB devel.
- Key milestone : ready for O4
- Public-facing alerts/candidates/ lightcurves



current configuration

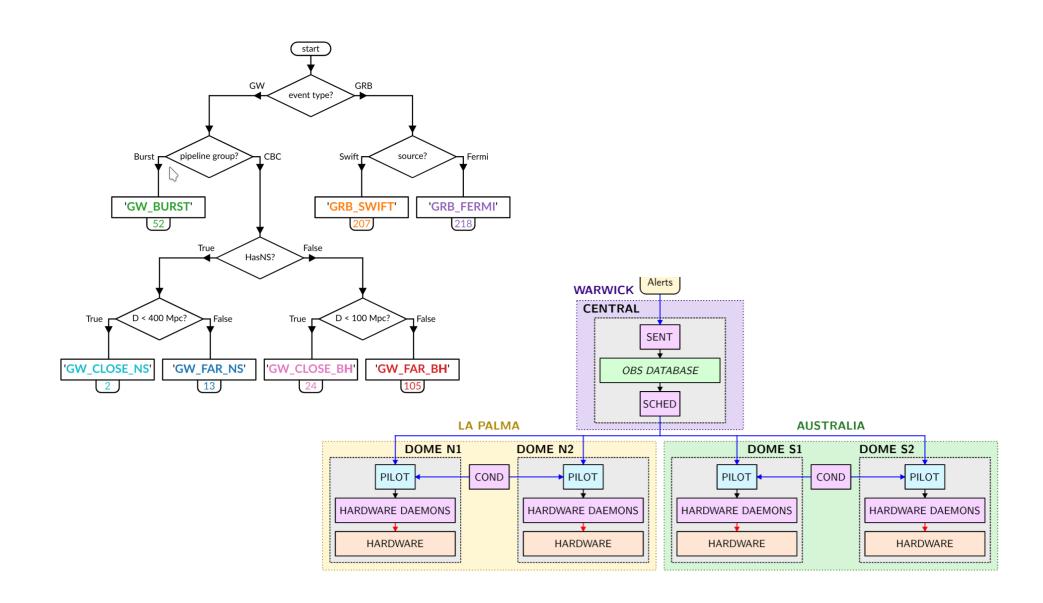
Array approach


- Survey capability set by size of telescope array
- Need to cover all-sky
- Need to keep cadence low
- Need to go deep enough
- Array flexibility:
 balance speed versus depth
 or colour versus wide-band
- Kilonova timescale ~ few days
- SN searches ~1/week

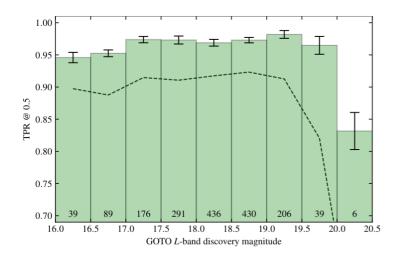


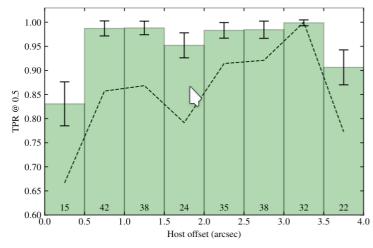
coverage and cadence for nominal sampling

GW Evolution & Strategy

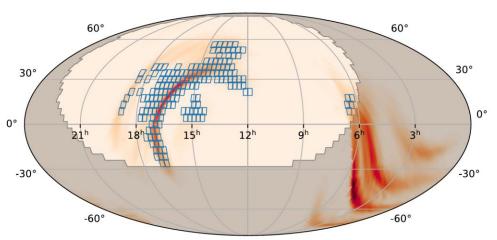

General evolution towards higher rates, larger horizons and better localisations

Huge diversity remains


GOTO's modular approach permits eventspecific strategy


- type of event (BNS, NSBH, ...)
- FAP/p value
- distance constraints
- 90% localisation area
- time since trigger

GOTO @ La Palma



GOTO Prototype GW Follow-up

- Chased 32 GW events in O3a
- Gompertz et al. 2020
 [if you want to read the table]
- Mean area covered = 732 sqr.deg
- Up to 94% probability coverage
- Decent KN range

Searching for EM Counterparts to GW Merger Events with GOTO-4 9

	Respon	Response Time		2D Coverage		3D Coverage			KN Range			
Event	$\delta t_{\rm trig}$	$\delta t_{\rm alert}$	Area	pA	pA_{vis}	pV_{bazin}	$pV_{\rm GRB}$	$pV_{\text{off-axis}}$	pV_{c19}	D_{90}	D ₅₀	D_0
	(hours)	(hours)	(deg^2)	(%)	(%)	(%)	(%)	(%)	(%)	(Mpc)	(Mpc)	(Mpc)
S190408an [†]	11.4	10.8	156.1	20.2	23.8	1.20×10^{-5}	1.47×10^{-2}	2.82×10^{-7}	3.22×10^{-5}	31	70	135
$S190412m^{\dagger}$	15.0	14.0	295.2	94.4	94.7	8.68×10^{-3}	3.48	0	1.07×10^{-2}	107	117	151
S190421ar	48.3	29.1	114.3	8.88	36.6	4.92×10^{-5}	3.97×10^{-3}	3.89×10^{-7}	3.49×10^{-4}	57	61	66
S190425z	12.4	9.50	2667.1	22.0	38.1	5.90	20.6	2.57×10^{-3}	8.10	46	134	227
S190426c	5.30	5.00	772.7	54.1	70.2	1.10×10^{-2}	8.98	0	1.42×10^{-2}	4	44	136
S190510g	1.42	0.40	116.1	0.21	0.55	2.06×10^{-3}	0.21	0	3.60×10^{-2}	48	55	57
S190512at	2.78	2.50	315.1	87.1	92.4	8.52×10^{-5}	0.37	0	1.26×10^{-4}	22	60	154
$S190513bm^{\dagger}$	0.55	0.05	116.2	28.5	76.3	1.35×10^{-5}	0.59	0	2.51×10^{-5}	56	83	120
$\mathrm{S}190517\mathrm{h}^\dagger$	15.9	15.2	112.7	14.8	51.6	1.40×10^{-6}	1.25×10^{-4}	0	1.62×10^{-6}	49	67	84
$S190519bj^{\dagger}$	5.35	4.35	664.8	84.7	85.3	2.41×10^{-6}	9.55×10^{-4}	0	3.64×10^{-6}	43	69	161
S190521g	0.13	0.05	393.2	43.7	86.7	8.30×10^{-6}	7.57×10^{-2}	0	1.11×10^{-5}	94	107	126
$S190521r^{\dagger}$	15.2	15.1	720.7	91.9	92.9	3.85×10^{-6}	1.17×10^{-3}	0	7.32×10^{-6}	9	51	93
S190630ag	2.40	2.40	1170.3	60.9	79.5	1.33×10^{-3}	19.0	1.66×10^{-7}	3.09×10^{-3}	71	112	150
S190706ai	0.33	0.03	543.9	36.7	48.5	8.03×10^{-6}	1.07	1.67×10^{-8}	2.86×10^{-5}	55	94	168
S190707q	12.4	11.7	722.9	34.4	59.3	2.06×10^{-5}	2.77×10^{-2}	0	2.54×10^{-5}	18	53	122
$S190718y^{\dagger}$	6.58	6.10	242.5	61.2	72.9	1.12	28.9	1.54×10^{-2}	2.45	10	27	90
S190720a	0.08	0.04	1358.3	62.1	73.3	1.89×10^{-4}	9.51	7.67×10^{-7}	5.45×10^{-4}	42	54	163
S190727h	15.0	14.9	714.7	42.3	93.5	5.72×10^{-7}	6.03×10^{-5}	0	1.43×10^{-6}	52	66	140
S190728q	14.8	14.5	146.9	89.5	94.0	5.55×10^{-4}	1.03	0	8.62×10^{-4}	114	124	139
S190814bv	1.83	1.50	717.9	94.1	99.1	1.23×10^{-2}	89.6	2.33×10^{-6}	2.12×10^{-2}	55	61	81
S190828j	16.1	15.8	442.2	9.11	81.6	1.01×10^{-5}	2.30×10^{-3}	6.45×10^{-8}	1.27×10^{-5}	34	105	149
S1908281	16.9	16.5	453.6	1.94	50.5	5.60×10^{-5}	9.20×10^{-3}	4.66×10^{-7}	7.34×10^{-5}	127	138	154
S190901ap	0.12	0.04	2523.5	38.3	45.3	0.34	30.2	8.40×10^{-4}	1.16	62	88	144
S190910d	0.13	0.03	1675.0	41.2	85.1	5.43×10^{-3}	17.6	0	1.87×10^{-2}	28	69	148
S190915ak	29.9	29.8	18.2	0.08	0.08	3.63×10^{-11}	2.39×10^{-9}	0	8.42×10^{-11}	10	10	15
$S190923y^{\dagger}$	13.8	13.7	723.7	39.4	59.7	1.91×10^{-2}	8.95	0	2.29×10^{-2}	46	95	120
S190924h	2.97	2.90	281.3	70.2	73.1	4.52×10^{-5}	26.4	5.05×10^{-8}	3.59×10^{-4}	61	75	101
S190930s	6.28	6.20	2139.9	92.2	92.2	2.20×10^{-3}	14.2	1.06×10^{-6}	4.48×10^{-3}	13	89	142
$\mathrm{S}190930\mathrm{t}^{\dagger}$	12.8	12.7	918.2	6.84	9.91	1.24	6.55	1.06×10^{-3}	2.01	48	109	130
Mean	9.90	8.79	732.3	45.3	64.4	0.30	9.91	6.87×10^{-4}	0.48	48	79	126
Median	6.58	6.20	543.9	41.2	73.1	8.52×10^{-5}	1.03	0	3.59×10^{-4}	48	70	136