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What you might spot at night...
2

Orion Constellation
(Credit: Rogelio Bernal Andreo)

Shenar et al. (2015)
Orion Constellation

(Credit: Rogelio Bernal Andreo)

We see a lot of massive stars in the night sky
(e.g. all bright stars in Orion)

⇒ effect of their enormous luminosity

Massive stars are...
- actually rare in absolute numbers
- often in binaries or hierarchical systems

Credits: DSS, ESA/ESO/NASA FITS Liberator



What you might spot at night...
2

Orion Constellation
(Credit: Rogelio Bernal Andreo)

Shenar et al. (2015)
Orion Constellation

(Credit: Rogelio Bernal Andreo)

We see a lot of massive stars in the night sky
(e.g. all bright stars in Orion)

⇒ effect of their enormous luminosity

Massive stars are...
- actually rare in absolute numbers
- often in binaries or hierarchical systems

Credits: DSS, ESA/ESO/NASA FITS Liberator



What you might spot at night...
2

Orion Constellation
(Credit: Rogelio Bernal Andreo)

Shenar et al. (2015)

Orion Constellation
(Credit: Rogelio Bernal Andreo)

We see a lot of massive stars in the night sky
(e.g. all bright stars in Orion)

⇒ effect of their enormous luminosity

Massive stars are...
- actually rare in absolute numbers
- often in binaries or hierarchical systems

Credits: DSS, ESA/ESO/NASA FITS Liberator



What you might spot at night...
2

Orion Constellation
(Credit: Rogelio Bernal Andreo)

Shenar et al. (2015)

Orion Constellation
(Credit: Rogelio Bernal Andreo)

We see a lot of massive stars in the night sky
(e.g. all bright stars in Orion)

⇒ effect of their enormous luminosity

Massive stars are...
- actually rare in absolute numbers
- often in binaries or hierarchical systems

Credits: DSS, ESA/ESO/NASA FITS Liberator



What do we mean by massive?
3

young staryoung star
(e.g. OB star)(e.g. OB star)

evolved starevolved star
(e.g. Wolf-Rayet star)(e.g. Wolf-Rayet star)

??

Massive = high initial mass
I sometimes: Minit > 3 M�
→ in contrast to “low-mass stars”
→ 2 . . . 8 M�: intermediate mass

I usually: Minit > 8 . . . 10 M�
→ model uncertainties
→ C ignition (∼ 7.5 M�)
→ Ne ignition (∼ 10 M�)
⇒ eventual core collapse

I much shorter lifetimes
→ stronger gravitational force
→ higher core temperatures
→ much faster nuclear burning

I Luminous: L > 20 000 L�
Credits: NASA, ESA, and STScI
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The fate of massive stars
4

core: H ⇒ He

Main Sequence

shell: H ⇒ He

Yellow/Red Supergiant

shell: H ⇒ He
core: He ⇒ C

SN II?SN II?

Core Collapse

(shell: H ⇒ He)
core: He ⇒ C

Blue Supergiant

core: He ⇒ C

Helium Star

SN I?SN I?

Core Collapse

Mass Loss?

Significant uncertainty in the fate of massive stars
I type-Ibc SNe
I type-II SNe
I direct collapse

→ which mass regimes?
→ which evolutionary pathways?
→ differences with metallicity?

Observational evidence only for
RSG → SN II with Minit ≤ 18 M�
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Massive star evolution
5

Important stages of massive star evolution:

I Main Sequence (O, B)
I Red Supergiant (RSG)
I Luminous Blue Variable (LBV)
I Wolf-Rayet Star (WN, WC)

Observations yield:

Minit Mfinal
40 M� → ∼ 10 M�

120 M� → ∼ 30 M�

⇒ ∼ 75% of mass removed
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HRD example for Z�, evolutionary tracks by Ekström et al. (2012)
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Changing the life of a massive star
6

Massive stars can lose their outer layers in various ways:

Credit: NASA, JPL-Caltech, Spitzer

Stellar Winds
→ continuous

Credit: NASA, N. Smith

Outbursts
→ episodic

Credit: ESA/NASA, L. Calcada, S. de Mink

Binary Interaction
→ episodic/continuous

+ additional, more exotic scenarios
(e.g. rotationally induced mass loss) → which channels are common/typical?
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Massive Stars in the Carina Nebula Region
7

η Carη Car WR 22WR 22

Credit: NASA, N. Smith

Luminous Blue VariableLuminous Blue Variable

Credit: 2MASS, NASA/IPAC

(hydrogen-rich)(hydrogen-rich)

Wolf-Rayet StarWolf-Rayet Star

Panoramic View of the Carina Nebula Region (Credit: ESO)
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Luminous Blue Variables

diverse class of hot and variable objects
I S-Dor cycles
↪→ quasi-periodic Teff (and L) changes

Burggraf et al. (2015)
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Luminous Blue Variables

diverse class of hot and variable objects
I S-Dor cycles
↪→ quasi-periodic Teff (and L) changes

I giant eruptions (supernova impostors?)
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Massive Stars in the Carina Nebula Region
7

η Carη Car WR 22WR 22

Credit: NASA, N. Smith

Luminous Blue VariableLuminous Blue Variable

Credit: 2MASS, NASA/IPAC

(hydrogen-rich)(hydrogen-rich)

Wolf-Rayet StarWolf-Rayet Star

Panoramic View of the Carina Nebula Region (Credit: ESO)

Credit: NASA, ESA, and A. Feild (STScI)

Merger scenario for η Car
outburst?
(e.g. Smith et al. 2018, Ryosuke et al. 2020)

General Problem:
How to handle LBVs and
outbursts in stellar evolution?
I what is intrinsic?
I core vs. envelope origin?

(e.g. Grassitelli et al. 2020)
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Wolf-Rayet (WR) Stars

emission-line stars discovered in 1867
I named after French astronomers

Charles Wolf and Georges Rayet
I dense, persistent matter outflow
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I η Car not classified as WR, but “similar”
I evidence for LBV ↔ WR connection

(various quiescent LBVs show WR spectrum)
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Wolf-Rayet stars
8

Officially defined by their spectral appearance
I Mass loss up to 1 . . . 10 M� in 10 000 yr
I Wind velocities up to ≈ 5000 km/s
I Subclasses based on non-He lines: WN, WC, WO

Wolf-Rayet (WR) stars come in two (main) flavours:
I classical WR stars: core He-burning, evolved

↪→ partially or completely depleted in hydrogen
I very massive WNh stars: core H-burning, barely evolved

↪→ extension of the main sequence (“O stars on steroids”)

For the experts:
Low-mass analogue for some central stars of Planetary Nebula, denoted as [WR]

Thor’s Helmet (NGC 2359) around WR 7 (Credit: Rogelio Bernal Andreo, Ray Gralak)
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Spectral signatures of stellar winds
9

Spectral signatures of mass-loss beyond Wolf-Rayet stars:

He
II 

14
-5

He
II 

6-
4

Hα N
II

10 Lac (O9 V)

0.5

1.0

1.5

2.0

N
o

rm
a

liz
e

d
 F

lu
x

HD 15570 (O4 If)

0.5

1.0

1.5

2.0

6500 6600
λ/A

o

N
o

rm
a

liz
e

d
 F

lu
x

Optical:
I opt. thin wind: absorption lines

↪→ we mainly see the star

I opt. thick wind: emission lines
↪→ we (mainly) see the wind
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Stellar winds are inherent to all hot and massive stars
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Stellar winds in hot massive stars
10

Hot star winds are line-driven:
→ Main acceleration due to electron

scattering plus line absorption

→ inherent metallicity dependence

Puls, Vink, & Najarro (2008)

Radiation-driven winds of hot stars:
I general mechanism known (→ line opacities important)

I lots of details still unclear (e.g. multi-D effects)

I fundamental differences between OB and WR winds
⇒ uncertain, but reasonably constrained
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Stellar winds in cool massive stars
11

RSGs concepts commonly
inferred from AGB studies

Mass loss of cool stars is typically termed as dust-driven:
I radiative driving at cooler temperatures

→ atomic line opacities probably irrelevant
→ molecular opacities probably not sufficient
→ best candidate: dust grains (microscopic solid-state particles)

I slow wind speeds (∼ 10 km s−1)

Standard scenario:

PEDDRO

Pulsation-Enhanced
Dust-DRiven Outflow
e.g. Höfner & Olofsson (2018)

→ requires pulsation to
levitate atmospheric material

Credit: ESO/L. Calçada
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Stellar winds in cool massive stars
12

Observations for cool star mass loss more indirect:
→ no direct measurements from spectral appearance
→ study environment to gain “mass loss history”

⇒ how to treat RSGs in stellar evolution?

Meynet et al. (2015)

Radiation-driven winds of cool stars:
I standard, but not confirmed mechanism (→ dust opacities important)

I unclear if mass loss actually episodic or continuous
I some scenarios imply metallicity-dependence (e.g. due to C-O dependence)

I so far no mass-loss predictions from first principles
⇒ more uncertain and less constrained than hot-star regime

Credit: ESO/L. Calçada
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Nucleosynthesis
13

The yields of massive stars:
I from mass loss and SN explosion
I onion-like structure before core collapse

I mass loss could remove outermost layers,
thereby altering

→ further evolution
→ ionizing fluxes
→ stellar winds
⇒ overall yields

I + uncertainty of reaction rates

Fe, NiFe, Ni

Si, SSi, S
O, 20Ne, MgO, 20Ne, Mg

C, OC, O
He, C, 22NeHe, C, 22Ne

He, NHe, N

H, HeH, He



Nucleosynthesis
13

The yields of massive stars:
I from mass loss and SN explosion
I onion-like structure before core collapse
I mass loss could remove outermost layers,

thereby altering
→ further evolution
→ ionizing fluxes
→ stellar winds
⇒ overall yields

I + uncertainty of reaction rates

Fe, NiFe, Ni

Si, SSi, S
O, 20Ne, MgO, 20Ne, Mg

C, OC, O
He, C, 22NeHe, C, 22Ne

He, NHe, N

H, HeH, He



Nucleosynthesis
13

The yields of massive stars:
I from mass loss and SN explosion
I onion-like structure before core collapse
I mass loss could remove outermost layers,

thereby altering
→ further evolution
→ ionizing fluxes
→ stellar winds
⇒ overall yields

I + uncertainty of reaction rates

Image Credit: CSIRO ATNF



The Origin of the Elements
14

Kobayashi et al. (2020)

Background Graphic:
Jennifer Johnson (2013)



The Origin of the Elements
14

Kobayashi et al. (2020)

Background Graphic:
Jennifer Johnson (2013)



Ionizing fluxes
15

Hot, massive stars emit a significant portion of their flux below 911 Å

I Hydrogen (H I) ionizing flux
I Lyman Continuum (LyC) photons

WC6 at ZHe II He I H I

Blackbody

-9

-6

-3

2.5 3.0 3.5 4.0

 log λ [A
o

]

lo
g

 f
λ
 [

e
rg

 s
-1

 c
m

-2
 Ao

-1
]

I (hot) stars are not blackbodies → winds shift flux from UV to IR

The “Bubble Nebula” NGC7635 (Credit: Larry Van Vleet)



Ionizing fluxes
15

Hot, massive stars emit a significant portion of their flux below 911 Å
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Earliest spectral types dominate
the flux budget in a stellar population:
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I strong metallicity dependence
→ released by He stars with weak winds
→ more common in the early Universe

4.0 4.2 4.4 4.6
log(L/M∗ [L�/M�])

45

46

47

48

49

50

lo
g

Q
i

H ionizing fluxHe II ionizing flux −7

−6

−5

−4

lo
g(

Ṁ
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The imprint of massive stars on populations
17

Studying the integrated light of galaxies with
stellar population models

Credit: NASA Credit: ESO/L. Calçada

Next-gen. telescopes: integrated light from
massive stars in the Early Universe
→ are current predictions reliable?
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Credit: ESO/L. Calçada

Black Hole

Credit: NASA GSFC/CI Lab

No Remnant

Credit: ESO/M. Kornmesser

Black Hole statistics and GW interpretation
→ inherently tied to our understanding of massive stars
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Personal Research Example

Wolf-Rayet (WR) and Helium stars are
immediate Black Hole (BH) progenitors

⇒ Mass lost as WR limits final BH mass

Merging Black Hole Simulation (Credit: SXS project)
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Translating Observations into Physics
20

How do we study
hot, massive stars?
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My Research: Use model atmospheres to study mass loss
21

Wolf-Rayet starWolf-Rayet star black holeblack hole

∼ 105 yr∼ 105 yr
Reminder: WRs are direct BH progenitors

→ WR wind limits BH mass→ WR wind limits BH mass
Personal research example:
- Aim: Derive hot star wind mass loss

from first principles
- Method: Dynamically-consistent model

atmospheres (→ map full complexity)

- Outputs: Mass loss, wind structure,
ionizing fluxes, stellar spectra

→ Sander et al. (2020); Sander & Vink (2020); Higgins et al. (2021)

Pioneering insights:
- first theoretical description of WR winds

- wind strongly mass- and “metal”-dependent
→ not mapped in previous descriptions
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We are only at the beginning...
22

70 M� BH in our Galaxy

Credit: Jingchuan YU/Beijing Planetarium

Closest BH to Earth

Credit: ESO/L. Calçada

We are just discovering the true properties of massive stars
→ wide-range impact across the field of astrophysics

I Quantitative spectroscopy requires expertise and experience
I Stellar evolution should not considered to be “known”
I We need better insights on stellar winds and feedback

However:
Uncertainty does not mean we can arbitrarily change parameters!
Our knowledge about massive stars already gives a multitude of
insights, constraints, and theoretical understanding.
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Stars are giant balls of gas:

I no hard boundary (→ non-trivial radius definition)

I spectrum stems from a transition layer: stellar atmosphere

stellar atmosphere models
=

fundamental tool of astrophysics

Modelling challenges for hot stars:
- outside of thermodynamic equilibrium
- radiative transfer in expanding atmosphere
- connection from hydrostatic layers to supersonic wind
- model atoms for H, He, C, N, O, Fe, ...
+ many further physical and numerical issues
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