Determination of the positive parity band for the $^{14}C + \alpha$ molecular rotation in ^{18}O

Yanlin Ye
School of Physics and State Key Lab of Nuclear Physics and Technology, Peking University

at INPC2019, Glasgow
Collaborators

PHYSICAL REVIEW C 99, 064315 (2019)

Investigation of the 14C + α molecular configuration in 18O by means of transfer and sequential decay reaction

1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

2China Institute of Atomic Energy, Beijing 102413, China

3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

4Institute of High Energy Physics, CAS, Beijing 100049, China

5Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki 567-0047, Japan

6RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Chinese Physics C Vol. 43, No. 8 (2019) 084001

Spin determination by in-plane angular correlation analysis in various coordinate systems

Biao Yang(杨彪) Yan-Lin Ye(叶沿林)1 Jian-Ling Lou(楼建玲) Xiao-Fei Yang(杨晓菲) Jing-Jing Li(李晶晶) Yang Liu(刘洋) Wei Liu(刘威) Han-Zhou Yu(余翰舟)
I. Introduction

II. Measurement

III. Results and discussion

IV. Summary
Expanding and clustering - the threshold effect

Fig. 1. Schematic figure for rich phenomena in nuclear systems.
Examples at high excitation

Members of the $K = 0^+_2$, 1^-_2, and 0^+_4 bands of ^{20}O (with tentative assignments) are marked by downward hatched (blue), filled (cyan), and upward hatched (red) areas, respectively.
Observation criteria

i) E_x - spin systematics:
 high moment of inertia

ii) Large cluster decay width:
 large $\Gamma_{\text{Cluster}}/\Gamma ; \gamma^2_{\text{Cluster}} ; \theta^2_{\text{Cluster}}$

iii) Characteristic transition strength
 large $M(IS)$!!

iv) Structural link in population and decay selective path

Cluster-decay: E_x selectivity; AC/spin; BR/SF; decay-path
Reflection asymmetric systems

- symmetry breaking under reflection operation
- parity inversion doublet bands: almost parallel, separated by \(\sim 5 \text{ MeV} \)

\[
\phi_r = |^{14}\text{C} \otimes \alpha\rangle \quad (\alpha\text{-cluster right}) \\
\phi_l = |\alpha \otimes ^{14}\text{C}\rangle \quad (\alpha\text{-cluster left}) \\
\Phi^\pm = N(\phi_r \pm \phi_l).
\]

- observed in some even-even stable nuclei.

Question

M. L. Avila, PHYSICAL REVIEW C 90, 024327 (2014)

α-cluster structure of 18O

Resonant scattering; R-matrix analysis;

Finding:
- Previously classified molecular states are mostly with very small SF;
- The larger SFs are very much fragmented.

* Importance to determine the spins, cluster decay BRs (SFs) of the possible molecular states.
Outline

I. Introduction

II. Measurement

III. Results and discussion

IV. Summary
Reaction channel

\[^{13}\text{C} + ^{9}\text{Be} \rightarrow ^{18}\text{O} + \alpha \quad Q: 12.83 \text{ MeV} \]

\[^{14}\text{C} + \alpha \quad Q: 6.60 \text{ MeV} \]

- beam: \(^{13}\text{C}; 65\text{MeV}\)
- target: \(^{9}\text{Be}; 1.4\mu\text{m}\)
Detector setup

Combinations:

- $L0+R0$: $^{14}C + \alpha_{\text{dec.}}$
- $L0+R0/R2$: $\alpha_{\text{dec.}} + \alpha_{\text{rec.}}$
Outline

I. Introduction

II. Measurement

III. Results and discussion

IV. Summary
High resolution energy-spectra

$E_x(M)$:
7-19 MeV; 28 states;
New states $E_x > 14$ MeV

High resolution:
11.15/1.47/111.72 MeV,
12.38/12.58/12.94 MeV
Well resolved.

Branching Ratio

\[BR = \frac{N_{IM}/\epsilon_{IM}}{100 \times N_{MM}/\epsilon_{MM}} \]

Obtained for 14 states

<table>
<thead>
<tr>
<th>IM/MeV</th>
<th>MM/MeV</th>
<th>Branching Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.28</td>
<td>10.3</td>
<td>0.37±0.13</td>
</tr>
<tr>
<td>11.13</td>
<td>11.1</td>
<td>0.65±0.22</td>
</tr>
<tr>
<td>11.47</td>
<td>11.8</td>
<td>> 0.23±0.08</td>
</tr>
<tr>
<td>11.72</td>
<td>11.8</td>
<td>> 0.89±0.29</td>
</tr>
<tr>
<td>12.38</td>
<td>12.5</td>
<td>> 0.41±0.14</td>
</tr>
<tr>
<td>12.58</td>
<td>12.5</td>
<td>> 0.79±0.26</td>
</tr>
<tr>
<td>12.94</td>
<td>13.1</td>
<td>> 0.94±0.31</td>
</tr>
<tr>
<td>13.64</td>
<td>13.9</td>
<td>> 0.07±0.02</td>
</tr>
<tr>
<td>13.87</td>
<td>13.9</td>
<td>> 0.32±0.11</td>
</tr>
<tr>
<td>14.18</td>
<td>14.8</td>
<td>> 0.16±0.05</td>
</tr>
<tr>
<td>14.69</td>
<td>14.8</td>
<td>0.08±0.03</td>
</tr>
<tr>
<td>15.88</td>
<td>15.9</td>
<td>> 0.57±0.19</td>
</tr>
<tr>
<td>16.06</td>
<td>15.9</td>
<td>> 0.09±0.03</td>
</tr>
<tr>
<td>16.20</td>
<td></td>
<td>> 0.09±0.03</td>
</tr>
</tbody>
</table>
Angular correlation and spin

\[a(A, B^* \rightarrow c + C)b, \]

Spin 0 for c & C

\[W(\theta^* = 0^\circ, \psi' = \psi - \alpha \theta^*) \]

\[\alpha = \frac{l_i - J}{J}, \]

\[l_i = r_0(A_p^{1/3} + A_t^{1/3}) \sqrt{2 \mu E_{\text{c.m.}}} \]

\[|P_J(\cos(\psi))|^2. \]

Fig. 3. (color online) Schematic diagram of the four symmetric reaction-decay processes in the chamber plane. (a) and (b) are parity-symmetric processes, while (c) and (d) are their axial-symmetric processes, respectively. All processes are identified by the angles \(\theta^* \) and \(\psi \) defined in various coordinate systems, as described in the text.
For the 10.3 MeV state

\(\alpha_{\text{dec.}} \) \((T0)^+\) \(\alpha_{\text{rec.}} \) \((T2)\) events

\(\theta_{\text{cm}}: \ 4^\circ \sim 15^\circ \)

\(^{14}\text{C} \) beam

\(\alpha_{\text{rec.}} \)
Positive-parity band confirmed

Prediction (2010):

$0^+(3.63\text{MeV})$, bound;

$2^+(5.24\text{MeV})$, bound

$4^+(7.11\text{MeV})$, previously determined

$6^+(11.69\text{MeV})$, now separated

and large SF determined

Negative-parity band not confirmed

Prediction (2010):
1- (9.6MeV),
3- (9.8MeV),
5- (13.1MeV)
SF fragmented?

Present data based on precise coincident measurement.
PRC99(2019)064315

Ref. PRC90(2014)024327
Outline

I. Introduction

II. Measurement

III. Results and discussion

IV. Summary
Summary

- 28 α-decay states in 18O were observed with high precision, including a few new states.
- α-decay BR are extracted for 14 resonances, and their SF are deduced by using existing tentative spins.
- Spin-parity of 4$^+$ is determined for the 10.3 MeV state, by using the AC method.
- The positive parity band is confirmed for the 14C + α configuration in 18O, whereas the related negative-parity band is still questionable.
Thank you for your attention!
| E_x (MeV) | J^p | Γ_{tot} (keV) | BR | θ_α^2 | E_x (MeV) | J^p | Γ_{tot} (keV) | α (keV) | θ_α^2 | E_x (MeV) | J^p | Γ_{tot} (keV) | α (keV) | θ_α^2 | E_x (MeV) | J^p | Γ_{tot} (keV) | α (keV) | θ_α^2 | E_x (MeV) | J^p | | | | | | | | |
|---|
| 7.11(3)a | h | 8.96(1) | (4$^+$) | 70(30) | 5(1) | 0.20 | 8.93 | 9.35(2) | 3$^-$ | 180(30) | 110(30) | 0.48 | 9.70 | 3$^-$ | 140(10) | 15(2) | 0.04 | 10.29(4) | 4$^+$ | 29(4) | 19(2) | 0.09 | 10.29 | 3$^-$ | 4$^+$ | 5$^+$ | 0.10 | 10.30 | 4$^+$ |
| 7.62(3)b | 9.35(2) | 3$^-$ | 180(30) | 110(30) | 0.48 | 9.70 | 1$^-$ | 140(10) | 15(2) | 0.04 | 10.29(4) | 4$^+$ | 29(4) | 19(2) | 0.09 | 10.29 | 3$^-$ | 4$^+$ | 5$^+$ | 0.10 | 10.30 | 4$^+$ |
| 7.86(3)b | 9.70(1) | 3$^-$ | 140(10) | 15(2) | 0.04 | 10.29(4) | 4$^+$ | 29(4) | 19(2) | 0.09 | 10.29 | 3$^-$ | 4$^+$ | 5$^+$ | 0.10 | 10.30 | 4$^+$ |
| 8.57(4)c | 9.06(4) | 3$^-$ | 140(10) | 15(2) | 0.04 | 10.29(4) | 4$^+$ | 29(4) | 19(2) | 0.09 | 10.29 | 3$^-$ | 4$^+$ | 5$^+$ | 0.10 | 10.30 | 4$^+$ |
| 8.70(4)c | 9.27(4) | 3$^-$ | 140(10) | 15(2) | 0.04 | 10.29(4) | 4$^+$ | 29(4) | 19(2) | 0.09 | 10.29 | 3$^-$ | 4$^+$ | 5$^+$ | 0.10 | 10.30 | 4$^+$ |
| 8.90(4)c | 9.63(4)d | 4$^+$ | >0.37(0.03) | 0.07 | 10.29(4) | 4$^+$ | 29(4) | 19(2) | 0.09 | 10.29 | 3$^-$ | 4$^+$ | 5$^+$ | 0.10 | 10.30 | 4$^+$ |
| 9.13(4)e | 11.13(5)f | 2$^+$ | >0.65(0.03) | <0.01 (if 2$^-$)g | 10.98(4) | 2$^+$ | 280(130) | 20(10) | 0.01 | 11.43(1) | 4$^+$ | 40(10) | 30(10) | 0.05 | 11.39 |
| 11.47(5)h | 61(14) | >0.23(0.01) | 0.02 (if 4$^+$)j | 11.43(1) | 4$^+$ | 40(10) | 30(10) | 0.05 | 11.39 |
| 11.57(5)h | 61(14) | >0.23(0.01) | 0.02 (if 4$^+$)j | 11.43(1) | 4$^+$ | 40(10) | 30(10) | 0.05 | 11.39 |
| 11.72(5)i | 32(5) | >0.89(0.03) | 0.56 (if 6$^+$)j | 11.699(5) | 6$^+$ | 23(2) | 12(1) | 0.23 | 11.62 | 5$^-$ | 11.63 |
| 12.32(5)i | 23(5) | >0.89(0.03) | 0.56 (if 6$^+$)j | 11.699(5) | 6$^+$ | 23(2) | 12(1) | 0.23 | 11.62 | 5$^-$ | 11.63 |
| 12.58(5)i | 23(5) | >0.89(0.03) | 0.56 (if 6$^+$)j | 11.699(5) | 6$^+$ | 23(2) | 12(1) | 0.23 | 11.62 | 5$^-$ | 11.63 |
| 12.94(5)i | 337(16) | >0.94(0.04) | 0.10 (if 2$^-$)r | 12.90(3) | 2$^+$ | 310(30) | 285(30) | 0.09 | 13.00 | (2,4)$^+$ | 13.11 |
| 13.64(6)i | 35(26) | >0.07(0.01) | 0.02 (if 6$^+$)j | 13.69(1) | 2$^+$ | 530(120) | 40(20) | 0.01 | 13.94 |
| 13.87(6)i | 37(26) | >0.07(0.01) | 0.02 (if 6$^+$)j | 13.69(1) | 2$^+$ | 530(120) | 40(20) | 0.01 | 13.94 |
| 14.16(6)i | 169(27) | >0.16(0.01) | 0.02 (if 6$^+$)j | 13.89(1) | 4$^+$ | 24(10) | 14(6) | 0.01 | 13.94 |
| 14.59(6)i | 44(10) | >0.57(0.02) | 0.02 (if 6$^+$)j | 13.96(2) | 3$^-$ | 150(50) | 80(10) | 0.03 | 14.59 |
| 16.04(6)j | 16.20 |
| 17.12(6)j | 17.40 |
| 17.42(7)j | 17.81(9)c | 17.40 |
| 18.25(9)c | 18.25(9)c | 17.40 |

aFrom events with $^{14}C + \alpha_{\text{decay}}$ detected in the same telescope (L0/R0).
bFrom events with $\alpha_{\text{decay}} + \alpha_{\text{recoil}}$ detected in two telescopes (L0+R0).
cFrom events with $^{14}C + \alpha_{\text{decay}}$ detected in two telescopes (L0+R0).
dPossible spin assignment from Ref. [24].
ePossible spin assignment from Ref. [25].
fPossible spin assignment from Ref. [26].
gPossible spin assignment from Ref. [27].
hPossible spin assignment from Ref. [28].
iPossible spin assignment from Ref. [29].