Recent strangeness results from the RHIC beam energy scan and SPS

Xianglei Zhu
Tsinghua University
8/1/2019
QCD phase diagram

- RHIC BES & SPS
 Cover the intermediate baryon density region
 Look for onset of de-confinement, phase boundary and critical point
• **STAR:** Collider experiment at RHIC

• full azimuthal coverage at mid-rapidity

• **BES-I (completed)**
 \[\text{Au} + \text{Au} \sqrt{s_{NN}} = 62.4 - 7.7 \text{ GeV} \]

• **BES-II (on-going)**
 \[\text{Au} + \text{Au} \sqrt{s_{NN}} = 19.6 - 7.7 \text{ GeV} \]

• **Fixed-target (on-going)**
 \[\text{Au} + \text{Au} \sqrt{s_{NN}} = 7.7 - 3.0 \text{ GeV} \]
 \[\mu_B \text{ up to } 721 \text{ MeV} \]
NA61/SHINE

- **NA61/SHINE:** Fixed target experiment at SPS
- Large acceptance: full forward hemisphere down to $p_T=0$
- Performed 2D scan in collision energy and system size

S. Puławski, SQM2019
Particle yields (STAR BES-I)

- dN/dy at mid-y for all species vs centrality and energy
- Yield per participating pair increases towards central and higher energies in general
- Exceptions:
 - p and Λ yields decrease towards higher energy
 - \bar{p} and $\bar{\Lambda}$ has weak centrality dependence
Particle yields in central collisions

- STAR BES-I data consistent with published data in general
- Rich structure in these excitation functions
- p and Λ yields reach minimum at 39 GeV: interplay of baryon transport and pair production
Average transverse mass

- A step-like structure can be seen in the energy dependence, first-order phase transition?
- Λ and Λ show split at lower energies might be due to baryon-antibaryon annihilations at high baryon density
Qualitatively similar energy dependence is seen in $p+p$, Be+Be and Pb+Pb collisions.

Magnitude of T in Be+Be slightly higher than in $p+p$.

Ar+Sc results between $p+p$/Be+Be and Pb+Pb.
Directed flow (STAR BES-I)

- Sign change of proton $d\nu_1/dy$, softening of EOS, first-order phase transition
- Double sign change seen in net-proton, net-Λ, not seen in net-kaon
- Need theory to explain

STAR, PRL112, 162301, 2014
STAR, PRL120, 062301, 2018
Directed flow (NA61/SHINE)

- At 30A GeV/c, close to mid-rapidity, slope of pion v_1 is negative for all centralities; slope of proton v_1 changes sign at centrality of about 50%
- At 13A GeV/c, no evidence for the collapse of proton v_1
K⁺/π⁺ ratio (NA61/SHINE)

- Plateau like structure visible in p+p
- Be+Be close to p+p
- Ar+Sc is higher than p+p but form of energy dependence is similar to p+p (no horn)

P. Podlaski, SQM2019
Strange hadron to pion ratio (STAR BES-I)

- Particle ratios consistent with NA49, consistent with the picture of a maximum net-baryon density around $\sqrt{s_{NN}} \sim 8$ GeV at freeze-out

J. Randrup et al., PRC 74, 047901 (2006)
Anti-hadron to hadron ratio

• Centrality dependence of \bar{B}/B ratios: peripheral > central

• This effect is more prominent at lower energies.

baryon stopping and/or anti-baryon absorption

• Loss of low p_T $\bar{\Lambda}$ in central collisions
Anti-hadron to hadron ratio

- STAR BES data lie in a trend with NA49 data

- \overline{B}/B ratios increase with number of strange quarks at low energies:
 \[
 \Omega^+ / \Omega^- > \Xi^+ / \Xi^- > \Lambda / \Lambda > \overline{p} / p
 \]
Anti-hyperon to hyperon ratio

\[n_i = \frac{g_i}{(2\pi^2)} \gamma_S^{S_i} m_i^2 T K_2(m_i/T) \exp(\mu_i/T) \]

- \(\bar{\Lambda} / \Lambda = \exp(-\frac{2\mu_B}{T} + \frac{2\mu_S}{T}) \)
- \(\bar{\Xi}^+ / \Xi^- = \exp(-\frac{2\mu_B}{T} + \frac{4\mu_S}{T}) \)
- \(\bar{\Omega}^+ / \Omega^- = \exp(-\frac{2\mu_B}{T} + \frac{6\mu_S}{T}) \)

\[\ln\left(\frac{\bar{\Lambda}}{\Lambda}\right) = -\frac{2\mu_B}{T} + \frac{2\mu_S}{T} \]
\[\ln\left(\frac{\bar{\Xi}^+}{\Xi^-}\right) = -\frac{2\mu_B}{T} + \frac{4\mu_S}{T} \]
\[\ln\left(\frac{\bar{\Omega}^+}{\Omega^-}\right) = -\frac{2\mu_B}{T} + \frac{6\mu_S}{T} \]

- T is the temperature.
- \(\mu_B \) is the baryon chemical potential.
- \(\mu_S \) is the strangeness chemical potential.

Anti-hyperon to hyperon ratios are fit well with statistical thermal model.

Chemical freeze-out parameters, μ_S/T_{ch} and μ_B/T_{ch}, are extracted.
Strangeness, LQCD and freeze-out in HIC

freeze-out T by comparing μ_S/μ_B from LQCD and expt.

From Swagato Mukherjee

not reproduced by hadron gas with only PDG states

reproduced when additional Quark Model (QM) predicted strange baryons are taken into account

indirect evidence for so-far undiscovered strange baryons at RHIC?
Chemical freeze-out parameters: T_{ch} vs. μ_B

- **Particles used:** π, K, p, Λ, Ξ
- **Ensemble used:** Grand canonical (GCE)
- **Fit parameters:** T_{ch}, μ_B, μ_s and γ_s

Nuclear modification factors R_{CP}

- No K_S^0 suppression in Au+Au 7.7 and 11.5 GeV
- Cronin effect and other effects (radial flow) compete with partonic energy loss
- Intermediate p_T, particle R_{CP} difference becomes smaller @ 7.7 and 11.5 GeV

STAR, arXiv:1906.03732
Nuclear modification factors R_{CP}

- No suppression for lower energies
- Cronin effect and other effects (radial flow) compete with partonic energy loss

STAR, PRL121, 032301, 2018
\[\sqrt{s_{NN}} < 19.6 \text{ GeV}, \] at intermediate \(p_T \), the separation of central (0-5\%) and peripheral (40-60\%) collisions in \(\bar{\Lambda}/K_S^0 \) becomes less significant.
Intermediate p_T Ω/ϕ ratios:
Indication of separation between ≥ 19.6 and 11.5 GeV

Ω/ϕ ratios: $40\%-60\%$ peripheral $< 0\%-10\%$ central for 19.6, 27 and 39 GeV
The STAR fixed-target program

1.3M events from half hour test run, top 30% central trigger, Au+Au $\sqrt{s_{NN}}=4.5$ GeV

3.4M events from two hour test run, top 30% central trigger, Al+Au $\sqrt{s_{NN}}=4.9$ GeV

A 1 mm thick (4% inter. prob.) gold target
Hadron spectra and dN/dy in Au+Au $\sqrt{s_{NN}}=4.5$ GeV

- Amplitude and width of rapidity densities are consistent with AGS experiments
- $m_T - m_0$ and y range will be extended by eTOF and iTPC upgrades

Y. Wu, QM2018
Top 5%
Directed flow in Au+Au $\sqrt{s_{NN}}=4.5$ GeV

Baryon v_1 slope is consistent with E895 at 4.3 GeV

Y. Wu, QM2018
K_S^0 and Λ spectra/yield from $\text{Al} + \text{Au}$ $\sqrt{s_{NN}} = 4.9$ GeV

M.-U. Ashraf, ATHIC2018

Top 5%
Summary & outlook

- STAR BES-I and NA61/SHINE have measured systematically the production of strangeness and LF at intermediate baryon density.
- Step/horn structures are now investigated at different system sizes.
- Double sign change seen in directed flow of net-baryons, but not in net-kaons.
- QGP signatures appear to turn off at lower collision energies, but need more statistics to confirm.
- The ongoing STAR BES-II with detector upgrade (iTPC, eTOF, EPD) and larger luminosity allow precise measurement of the matter properties at intermediate baryon density (μ_B up to 721 MeV).
- More results from SPS NA61/SHINE 2D scan are expected to fully explore the onset of deconfinement, onset of fireball…