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FIG. 1. (Color online) Energy per particle of neutron mat-
ter (top row) and symmetric nuclear matter (bottom row)
based on the Hebeler+ [16] and NNLOsim [6] NN and 3N
interactions (columns). Results are shown for �/⇤3N for the
interactions of Ref. [16] and ⇤NN = ⇤3N for those of Ref. [6].
For symmetric matter, the gray box denotes the saturation re-
gion, n0 = 0.164± 0.007 fm�3 and E/A = �15.86± 0.57MeV.
We also give the calculated range for the symmetry energy
Esym and its slope parameter L at n0 = 0.16 fm�3 (indicated
by the dashed vertical line).

Specifically, in this first application, we consider all con-
tributions from NN interactions up to fourth order in
MBPT (around the Hartree-Fock reference state). Contri-
butions from 3N interactions are included exactly up to
second order, including residual 3N-3N terms, which have
only been evaluated so far for contact interactions [44].
At third order, we neglect all terms that involve at least
one residual 3N contribution, whereas at fourth order we
neglect all 3N contributions. These contributions turn out
to be smaller (see discussion below). This amounts to 4,
20 = 3 ·23�4, and 24 = 39�15 diagrams at second, third,
and fourth order, respectively, with up to 21-dimensional
momentum integrals per diagram. The number of dia-
grams at third (fourth) order can be reduced by 4 (15) at
zero temperature. In comparison, a full calculation would
involve 39 · 24 = 624 fourth-order diagrams. We also eval-
uate the 4N Hartree-Fock energy, but it is generally small,
in agreement with Ref. [18].
We assess the numerical convergence of the integra-

tion by varying the number of sampling points as well as
employing two di↵erent Monte-Carlo algorithms [28], in

FIG. 2. (Color online) Correlation between the calculated
saturation density n0 and saturation energy E/A for the
Hebeler+ [16] and NNLOsim [6] NN and 3N interactions ob-
tained at second, third, and fourth order in MBPT. The values
of �/⇤3N and ⇤NN = ⇤3N, as well as the saturation region are
as in Fig. 1. The diamond refers to the NNLOsat result [1].

addition to the variance as statistical uncertainty. The
framework is remarkably e�cient due to performance opti-
mization and parallelization. Most diagrams up to fourth
order can be evaluated within about 10 minutes to a
precision of . 10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N interac-
tions requires more time due to the higher dimensionality
of the momentum integrals. However, the strength of the
present Monte-Carlo approach is that the precision can be
controlled in a systematic way using the uncertainty esti-
mates, as short runtimes are important when optimizing
nuclear interactions. For this purpose, one could start con-
straining a fit with lower accuracy around the saturation
point and then successively become more accurate.
Results for nuclear matter.– In Fig. 1 we present re-

sults for the energy per particle in symmetric nuclear
matter and neutron matter based on the Hebeler+ [16]
and NNLOsim [6] NN and 3N interactions up to fourth
order in MBPT. For symmetric matter we show the em-
pirical saturation region by a box with boundaries n0 =
0.164± 0.007 fm�3 and E/A = �15.86± 0.37± 0.2MeV
where the first uncertainties are as in Ref. [22] and we add
an additional 0.2MeV from Ref. [45]. In addition, we give
results for symmetry energy range Esym = E/N � E/A
as well as its slope parameter L = 3n0@nEsym at n0 =
0.16 fm�3. Both are predicted with narrow ranges.
The Hebeler+ interactions were obtained by a simi-

larity renormalization group evolution [46] of the N3LO

Ab initio approach

○ QCD  ➝  Model of inter-nucleon interactions (𝜒EFT)

Hamiltonian

○ Long-term goal: model-independent + uncertainties

○ Current situation: proliferation of models

[H
ebeler et al. 2015]

Many-body approaches

○ Exact methods limited to light nuclei

○ Expansion methods up to mass A ~ 100

○ Several complementary methods exist  ➟  benchmarks

A-body Hamiltonian
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A-body wave-function
A-body observables

➟ Solve many-body Schrödinger equation in a controlled, systematically improvable way
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⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

⦿ A symmetry-breaking reference lifts the degeneracy

Open-shell nuclei

Pairing correlations
↕ 

Superfluidity
↕

Breaking of U(1)

Quadrupole correlations
↕

Deformation
↕

Breaking of SU(2)

Singly open-shells Doubly open-shells

○ Reference states respects symmetries of H   ➝   works well in closed-shell systems
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Set up

⦿ Many-body approach: Self-Consistent Green’s Functions

⦿ Hamiltonians

○ NN+3N(400)  (~2010)

○ NNLOsat  (2015)

○ NN+3N(lnl)  (2018)

[Entem & Machleidt 2003, Navrátil 2007, Roth et al. 2012]

[Ekström et al. 2015]

[Entem & Machleidt 2003, Navrátil 2018]
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○ Generalised to Gorkov scheme

Self-consistent Green’s function approach

⦿ Solution of the A-body Schrödinger equation                                        achieved by

1) Rewriting it in terms of 1-, 2-, …. A-body objects G1=G, G2, … GA (Green’s functions)

2) Expanding these objects in perturbation (in practice G ➟ one-body observables, etc..)

➟ Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions
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⦿ A variety of quantities can be accessed

○ One-body GF  ➝  Ground-state properties of even-even A + spectra of odd-even neighbours

○ Two-body GF  ➝  Excited spectrum of even-even A

○ Self-energy      ➝  Optical potential for nucleon-nucleus scattering

3) Truncating the perturbation series to some level of approximation
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○ G.s. properties of even-even A + spectra of odd-even

[Somà, Duguet, Barbieri 2011]

○ Self-energy  ➝  Optical potential for NA scattering



Energy systematics: binding energies
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⦿ First objective: ab initio calculations as a diagnostic tool for the development of Hamiltonian

○ Novel Hamiltonians correct overbinding

○ 3rd-order yields needed correlations

○ Very reasonable agreement for S2n

○ N=20 gap still overestimated 



○ Several chains, not only semi-magic

○ Trend w.r.t. experiment similar for all Z

⦿ Total energies
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A. Ground-state energies

Computed ground-state energies for Ar, K, Ca, Sc, Ti,
V and Cr isotopic chains are displayed in Fig. 11 and
compared to experimental (measured and extrapolated)
data. The global behaviour is well captured by the calcu-
lated energies across all values of Z and N . Underbind-
ing with respect to experiment is observed for all chains,
with the absolute di↵erence between computed and mea-
sured data increasing with mass number along a given
chain. As demonstrated for Ca and Ni isotopes in Figs. 3
and 4, ADC(3) correlations are expected to correct to a
large extent for this underbinding. Thus, one can con-
clude that bulk properties are reasonably well described
by the NN+3N(lnl) interaction consistently across the
medium-mass region of the nuclear chart.

Systematically accessing successive nuclides along an
isotopic chain allows investigating some of the most fun-
damental properties of atomic nuclei such as the limits
of their existence as bound states or the emergence (and
evolution) of magic numbers. Such properties are best
studied by looking at total ground-state energy di↵er-
ences, e.g. at two-neutron separation energies

S2n(N,Z) ⌘ |E(N,Z)|� |E(N � 2, Z)| (2)

or their di↵erences, usually referred to as neutron gaps

�2n(N,Z) ⌘ S2n(N,Z)� S2n(N + 2, Z) . (3)
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FIG. 12. Two-neutron separation energies along Z = 18� 24
isotopic chains computed within the ADC(2) approximation
with the NN + 3N(lnl) interaction, compared to experimen-
tal (measured and extrapolated) data. Both calculated and
experimental values are shifted by (Z � 20) ⇥ 5 MeV for a
better readability.
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FIG. 13. Relative errors on total binding energies along Z =
18, 20, 22 and 24 isotopic chains computed within the ADC(2)
approximation with the NN + 3N(lnl) interaction.

S2n computed from total energies of Fig. 11 are shown
in Fig. 12 together with available and extrapolated ex-
perimental data. The overall agreement with experiment
is good, with computed values following the main trends
of measured data. The two main gaps, relative to neu-
tron magic numbers N = 20, 28 and associated with sud-
den drops of S2n, are visible in all theoretical curves.
The N = 28 gap is very well reproduced across all iso-
topic chains, with the good description carrying over to
larger neutron numbers for most chains. On the contrary,
the N = 20 turns out to be overestimated in all cases,
with the comparison to experiment worsening when de-
parting from proton magic number Z = 20. The de-
scription worsens also in other regions, e.g. for argon
isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. In such systems both pro-
tons and neutrons have an open-shell character. The
absence of a closed-shell, which normally maintains the
nucleus at or near sphericity, is likely to lead to a de-
formed ground-state. Present calculations are however
restricted to spherical solutions, and the employed many-
body truncation is not expected to be high enough to
capture su�cient correlations related to deformation (e.g.
quadrupole correlations).

To substantiate the above observations let us plot, in
Fig. 13, di↵erences between computed and experimen-
tal ground-state energies per nucleon for the four even-
Z isotopic chains considered here. One notices that for
calcium isotopes (Z = 20), characterised by good closed-
shell protons, calculations are the closest to experiment.
Argon and titanium isotopes, with two protons less and
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○ High-order corrections ~ cancel out

○ Overall good agreement with data

○ N=20 gap overestimated

○ Excellent reproduction for N>28
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A. Ground-state energies

Computed ground-state energies for Ar, K, Ca, Sc, Ti,
V and Cr isotopic chains are displayed in Fig. 11 and
compared to experimental (measured and extrapolated)
data. The global behaviour is well captured by the calcu-
lated energies across all values of Z and N . Underbind-
ing with respect to experiment is observed for all chains,
with the absolute di↵erence between computed and mea-
sured data increasing with mass number along a given
chain. As demonstrated for Ca and Ni isotopes in Figs. 3
and 4, ADC(3) correlations are expected to correct to a
large extent for this underbinding. Thus, one can con-
clude that bulk properties are reasonably well described
by the NN+3N(lnl) interaction consistently across the
medium-mass region of the nuclear chart.

Systematically accessing successive nuclides along an
isotopic chain allows investigating some of the most fun-
damental properties of atomic nuclei such as the limits
of their existence as bound states or the emergence (and
evolution) of magic numbers. Such properties are best
studied by looking at total ground-state energy di↵er-
ences, e.g. at two-neutron separation energies

S2n(N,Z) ⌘ |E(N,Z)|� |E(N � 2, Z)| (2)
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S2n computed from total energies of Fig. 11 are shown
in Fig. 12 together with available and extrapolated ex-
perimental data. The overall agreement with experiment
is good, with computed values following the main trends
of measured data. The two main gaps, relative to neu-
tron magic numbers N = 20, 28 and associated with sud-
den drops of S2n, are visible in all theoretical curves.
The N = 28 gap is very well reproduced across all iso-
topic chains, with the good description carrying over to
larger neutron numbers for most chains. On the contrary,
the N = 20 turns out to be overestimated in all cases,
with the comparison to experiment worsening when de-
parting from proton magic number Z = 20. The de-
scription worsens also in other regions, e.g. for argon
isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. In such systems both pro-
tons and neutrons have an open-shell character. The
absence of a closed-shell, which normally maintains the
nucleus at or near sphericity, is likely to lead to a de-
formed ground-state. Present calculations are however
restricted to spherical solutions, and the employed many-
body truncation is not expected to be high enough to
capture su�cient correlations related to deformation (e.g.
quadrupole correlations).

To substantiate the above observations let us plot, in
Fig. 13, di↵erences between computed and experimen-
tal ground-state energies per nucleon for the four even-
Z isotopic chains considered here. One notices that for
calcium isotopes (Z = 20), characterised by good closed-
shell protons, calculations are the closest to experiment.
Argon and titanium isotopes, with two protons less and

⦿ Two-neutron separation energies
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○ Magic numbers emerge “ab initio”

○ Evolution with Z captured

⦿ Neutron gaps
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A. Ground-state energies

Computed ground-state energies for Ar, K, Ca, Sc, Ti,
V and Cr isotopic chains are displayed in Fig. 11 and
compared to experimental (measured and extrapolated)
data. The global behaviour is well captured by the calcu-
lated energies across all values of Z and N . Underbind-
ing with respect to experiment is observed for all chains,
with the absolute di↵erence between computed and mea-
sured data increasing with mass number along a given
chain. As demonstrated for Ca and Ni isotopes in Figs. 3
and 4, ADC(3) correlations are expected to correct to a
large extent for this underbinding. Thus, one can con-
clude that bulk properties are reasonably well described
by the NN+3N(lnl) interaction consistently across the
medium-mass region of the nuclear chart.

Systematically accessing successive nuclides along an
isotopic chain allows investigating some of the most fun-
damental properties of atomic nuclei such as the limits
of their existence as bound states or the emergence (and
evolution) of magic numbers. Such properties are best
studied by looking at total ground-state energy di↵er-
ences, e.g. at two-neutron separation energies

S2n(N,Z) ⌘ |E(N,Z)|� |E(N � 2, Z)| (2)
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S2n computed from total energies of Fig. 11 are shown
in Fig. 12 together with available and extrapolated ex-
perimental data. The overall agreement with experiment
is good, with computed values following the main trends
of measured data. The two main gaps, relative to neu-
tron magic numbers N = 20, 28 and associated with sud-
den drops of S2n, are visible in all theoretical curves.
The N = 28 gap is very well reproduced across all iso-
topic chains, with the good description carrying over to
larger neutron numbers for most chains. On the contrary,
the N = 20 turns out to be overestimated in all cases,
with the comparison to experiment worsening when de-
parting from proton magic number Z = 20. The de-
scription worsens also in other regions, e.g. for argon
isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. In such systems both pro-
tons and neutrons have an open-shell character. The
absence of a closed-shell, which normally maintains the
nucleus at or near sphericity, is likely to lead to a de-
formed ground-state. Present calculations are however
restricted to spherical solutions, and the employed many-
body truncation is not expected to be high enough to
capture su�cient correlations related to deformation (e.g.
quadrupole correlations).

To substantiate the above observations let us plot, in
Fig. 13, di↵erences between computed and experimen-
tal ground-state energies per nucleon for the four even-
Z isotopic chains considered here. One notices that for
calcium isotopes (Z = 20), characterised by good closed-
shell protons, calculations are the closest to experiment.
Argon and titanium isotopes, with two protons less and
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○ Magic peaks nicely visible

○ Pairing too weak

○ Dynamic contributions beyond second order?

⦿ Three-point mass differences
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FIG. 16. Neutron gaps along four isotonic chains computed
within the ADC(2) approximation with the NN+3N(lnl) in-
teraction, compared to experimental (measured and extrapo-
lated) data. Results for N = 28, 30, 32 and 34 are shown in
panels (a), (b), (c) and (d) respectively.

that all magic numbers as well as their qualitative evo-
lution emerge “from first principles”, i.e. starting solely
from inter-nucleon interactions whose coupling constants
have been adjusted only in few-body systems.

One of the longstanding challenges in low-energy nu-
clear physics relates to the microscopic description of nu-
clear superfluidity. The microscopic origin of nucleon
pairing, i.e. how it originates in the context of a first-
principle calculations and the role played by di↵erent
types of many-body correlations remains, to a large ex-
tent, to be explored. The present computational frame-
work, based on Gorkov theory, by treating normal and
anomalous propagators consistently and at the same level
of approximation is in the position to contribute to this
issue. In finite nuclei, the most relevant observable relat-
ing to nucleon pairing is the three-point mass di↵erence

�(3)(N,Z) ⌘ (�1)N

2
[E(N�1, Z)�2E(N,Z)+E(N+1, Z)] .

(4)
which gives a measure of pairing gaps starting from en-
ergy systematics. Computed three-point mass di↵erences
for even-Z Ar, Ca, Ti and Cr are shown and compared to
available experimental data in Fig. 17. In spite of a rea-
sonable general trend, the pairing strength generated in
the present ab initio calculations is too low compared to
the experimental one. This is particularly visible in the
f7/2 shell across all considered chains, as well as beyond
N = 34 for calcium and titanium. The odd-even stag-
gering also results underestimated, specially for titanium
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FIG. 17. Three-point mass di↵erences along Z = 18, 20, 22
and 24 isotopic chains computed within the ADC(2) approx-
imation with the NN + 3N(lnl) interaction, compared to ex-
perimental (measured and extrapolated) data. Both calcu-
lated and experimental values are shifted by (Z � 20) ⇥ 5
MeV for a better readability.

and chromium where experimental data display a marked
staggering for nearly all isotopes. Following previous re-
marks on S2n and �2n(N,Z), peaks associated to magic
numbers N = 20, 28, 32 are generally in good agreement
with experiment. Further studies are needed to better
understand the origin of the above discrepancies. In par-
ticular, many-body correlations beyond current ADC(2)
truncation might play an important role and should be
incorporated in the present framework in the future.

B. Radii

Let us now turn to charge radii. Calculations per-
formed with the NN+3N(lnl) Hamiltonian for Z =
18, 20, 22, 24 isotopic chains are compared to available
experimental points in Fig. 18. Similarly to what was
shown for Ca isotopes in Sec. IVB, for all chains in this
region theoretical values underestimate available data by
about 5-7%. On top of that, although results for dif-
ferent chains are spaced by roughly the amount seen in
experiment, they do not seem able to reproduce the fine
structure of experimental data. In particular, the change
of behaviour signalling magic number N = 28 is hardly
found in the theoretical curves.
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Energy systematics: pairing gaps
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Quasi-free knockout cross sectionsProbing nuclear structure by quasi-free scattering reactions
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⦿ Distorted-wave impulse approximation (DWIA)
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Spectra of K isotopes
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FIG. 1. (Color online) Experimental energies for 1/2+ and 3/2+

states in odd-A K isotopes. Inversion of the nuclear spin is obtained in
47,49K and reinversion back in 51K. Results are taken from [16,23–25].
Ground-state spin for 49K and 51K were established [22].

of the orbitals is driven by the monopole part of the proton-
neutron interaction, which can be decomposed into three com-
ponents: the central, vector, and tensor. Initially Otsuka et al.
[12] suggested that the evolution of the ESPEs is mainly due to
the tensor component. However, in more recent publications
[11,13,14] several authors have shown that both the tensor
term as well as the central term have to be considered.

Regarding the shell model, potassium isotopes are excellent
probes for this study, with only one proton less than the magic
number Z = 20. Nevertheless, little and especially conflicting
information is available so far for the neutron-rich potassium
isotopes. Level schemes based on the tentatively assigned spins
of the ground state were provided for 48K [15] and 49K [16]. In
addition, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27,28,
and 29 isotones in the shell-model framework and compared
to the experimental observation, where available. However, the
predicted spin of 2− for 48K, is in contradiction with Iπ = (1−)
proposed by Królas et al. [15]. In addition, the nuclear spin of
the ground state of 50K was proposed to be 0− [18] in contrast
to the recent β-decay studies where it was suggested to be
1− [19]. The ground state spin-parity of 49K was tentatively
assigned to be (1/2+) by Broda et al. [16], contrary to the
earlier tentative (3/2+) assignment from β-decay spectroscopy
[20]. For 51K, the nuclear spin was tentatively assigned to be
(3/2+) by Perrot et al. [21].

Our recent hyperfine structure measurements of potassium
isotopes using the collinear laser spectroscopy technique
provided unambiguous spin values for 48–51K and gave the
answer to the question as to what happens with the proton sd
orbitals for isotopes beyond N = 28. By measuring the nuclear
spins of 49K and 51K to be 1/2 and 3/2 [22], respectively,
the evolution of these two states in the potassium isotopes
is firmly established. This is presented in Fig. 1 for isotopes
from N = 18 up to N = 32 where the inversion of the states
is observed at N = 28 followed by the reinversion back at
N = 32. In addition, we have confirmed a spin-parity 1− for
48K and 0− for 50K [26]. The measured magnetic moments
of 48–51K were not discussed in detail so far and will be
presented in this article. Additionally, based on the comparison
between experimental data and shell-model calculations, the
configuration of the ground-state wave functions will be

FIG. 2. (Color online) Schematic representation of the setup for
collinear laser spectroscopy at ISOLDE.

addressed as well. Finally, ab initio Gorkov-Green’s function
calculations of the odd-A isotopes will be discussed.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear laser
spectroscopy beam line COLLAPS [27] at ISOLDE/CERN.
The radioactive ion beam was produced by 1.4-GeV protons
(beam current about 1.7 µA) impinging on a thick UCx target
(45 g/cm2). Ionization of the resulting fragments was achieved
by the surface ion source. The target and the ionizing tube
were heated to around 2000 ◦C. The accelerated ions (up to
40 kV) were mass separated by the high resolution separator
(HRS). The gas-filled Paul trap (ISCOOL) [28,29] was used
for cooling and bunching of the ions. Multiple bunches spaced
by 90 ms were generated after each proton pulse. The bunched
ions were guided to the setup for collinear laser spectroscopy
where they were superimposed with the laser. A schematic
representation of the beam line for collinear laser spectroscopy
is shown in Fig. 2.

A cw titanium:sapphire (Ti:Sa) laser was operated close
to the Doppler-shifted 4s 2S1/2 → 4p 2P1/2 transition at
769.9 nm, providing around 1 mW power into the beam
line. Stabilization of the laser system during the experiment
was ensured by locking the laser to a reference Fabry-Perot
interferometer maintained under vacuum, which in turn was
locked to a frequency stabilized helium-neon (HeNe) laser.
An applied voltage of ±10 kV on the charge exchange cell
(CEC) provided the Doppler tuning for the ions, which
were neutralized through the collisions with potassium vapor.
Scanning of the hyperfine structure (hfs) was performed by
applying an additional voltage in a range of ±500 V. The
resonance photons were recorded by four photomultiplier
tubes (PMT) placed immediately after the CEC. By gating
the signal on the PMTs to the fluorescence photons from the
bunches, the signal was only recorded for about 6 µs when
the bunches were in front of the PMTs. Consequently, the
background related to the scattered laser light was suppressed
by a factor ∼104 (6 µs/90 ms). More details about the setup
can be found in Ref. [26].

III. RESULTS

In Fig. 3 typical hyperfine spectra for 48–51K are shown.
The raw data are saved as counts versus scanning voltage. The

034321-2

⦿ Interesting g.s. spin inversion and re-inversion in K spectra

Laser spectroscopy COLLAPS @ ISOLDE

Recent experiment confirms 
NN+3N(lnl) prediction for 51K and 53K
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Electron and neutrino scattering
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○ Modelling neutrino-40Ar cross section crucial

⦿ Next-generation neutrino experiments (e.g. DUNE) make use of liquid-argon TPCs

○ Impulse approximation  ➞  nuclear structure effects encoded in the spectral function

4

TABLE I. Uncertainties associated with the presented
Ar(e, e0) cross section. Numbers represent upper limits or
the range for the uncertainties that vary between di↵erent
kinematical regions.

1. Total statistical uncertainty 1.7%–2.9%
2. Total systematic uncertainty 1.8%–3.0%

a. Beam charge & beam energy 0.3%
b. Beam o↵set x&y 0.4%–1.0%
c. Target thickness and boiling e↵ect 0.7%
d. HRS o↵set x&y + optics 0.6%–1.2%
e. Acceptance cut (✓,�,dp/p) 0.6%–2.4%
f. Calorimeter & Čerenkov cuts 0.01%–0.03%
g. Cross section model 1.3%
h. Radiative & Coulomb corrections 1.0%

Ar
Ti
C

E0 (GeV)

d2
�

d⌦
dE

0/
[Z
�
ep
+
(A

�
Z
)�

en
]

2.22.01.81.61.41.2

8

6

4

2

0

FIG. 2. (color online). Comparison of Ar(e, e0) cross section
of Fig. 1, and Ti(e, e0) and C(e, e0) cross sections of Ref. [23],
all in the same kinematics, presented in terms of the ratio
defined by Eq.(4).

reactions. It is apparent that this procedure leads to a
remarkably good description of both shape and normal-
ization of the data in the the quasielastic region. How-
ever, it does not include two-body currents and delta-
excitation mechanisms which are clearly visible in the
region of lower E0 values (i.e. larger energy transfers).

In Fig. 2, we compare the argon data to the titanium
and carbon data of Ref [23], taken in the same kine-
matical setup, corresponding to incident electron energy
2.222 GeV and scattering angle of 15.541 deg. The com-
parison is performed in terms of the ratio defined as

(d2�/d⌦dE0)/[Z�ep + (A� Z)�en] , (4)

where A and Z are the nuclear mass number and
charge, respectively, while �ep and �en denote the elas-
tic electron-proton and electron-neutron cross sections
stripped of the energy-conserving delta function [32].
The results of Fig. 2, showing that the ratios of Eq.(4)
corresponding to argon and titanium are nearly identical
to one another, appear to support the strategy underly-

ing our experiment, aimed at exploiting titanium data to
extract complementary information on nuclear e↵ects in
argon. On the other hand, the di↵erences between the re-
sults for argon and carbon indicate significant di↵erences
in the ground-state properties of these nuclei, which are
relevant in the context of MC simulations for DUNE.

FIG. 3. (color online). Comparison between the scaling func-
tion of the second kind, f( ), obtained from E12-14-012 data
on Ar, Ti, and C. The kF of C is fixed to the value obtained
by Moniz et al. [34] while the data analysis of Ti and Ar
sets kF at 240 MeV and 245 MeV, respectively. The circles
are the Ar data from LNF [11], which turn out to prefer an
inconsistently higher value of kF .

To further elucidate the di↵erences between the argon,
titanium, and carbon cross sections, in Fig. 3, we show
the corresponding scaling functions of the second kind,
f( ), displayed as a function of the dimensionless scal-
ing variable  . The definitions of both f( ) and  in-
volve a momentum scale, which can be loosely interpreted
as the nuclear Fermi momentum, kF [33], providing a
simple parametrization of nuclear e↵ects. The results of
Fig. 3 show that setting the carbon Fermi momentum to
220 MeV—the value resulting from the analysis of Moniz
et al. [34]—scaling of titanium and argon data is observed
for kF = 240 and 245 MeV, respectively. Hence, the scal-
ing analysis confirms the picture emerging from Fig. 2.
For comparison, we also show the scaling function f( )
obtained using the Ar(e, e0) cross section at 700 MeV
and 32 deg, measured at the LNF electron-positron stor-
age ring ADONE using a jet target [11]. It turns out
that scaling of the LNF data is only observed at  ⇡ 0
and prefers a much larger value of the Fermi momentum,
kF=375 MeV, than the one resulting from the analysis of
the JLab data. This inconsistency may well be the result
of the normalization issue that the authors of Ref. [11]
found in their 16O cross section as compared to the previ-
ously measured cross section at Bates Linear Accelerator
Center [35] which was considered as a reference dataset
by the authors of Ref. [11]. A normalization factor of

Spectral function for 40Ar and Ti
Jlab experiment E12-14-012 (Hall A)
Phys. Rev. C 98, 014617 (2018); arXiv:1810.10575 
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Electron and neutrino scattering
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⦿ Application to electron and neutrino scattering

○ Good reproduction of JLAB data
[Dai et al. 2018 & 2019]

○ Small contribution from final-state interactions

○ Approximation 40Ar[n] ⟷ 48Ti[p] validated

○ To be included next: 2B currents



Conclusions

⦿ Considerable progress in ab initio calculations of (open-shell) mid-mass nuclei

⦿ Many-body approaches

⦿ Hamiltonians
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Cr○ Complementary methods  ➞  benchmarks

○ Systematic calculations up to A ~ 100

○ Frontiers: doubly open-shell & heavy nuclei

○ Good quality, but not for all observables

○ Strong activity ongoing, new developments

○ Long-term: full assessment of uncertainties


