Effect of Fock terms on nuclear symmetry energy based on Lorentz-covariant decomposition of nucleon self-energies

Tsuyoshi Miyatsu

Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Japan

in collaboration with
Myung-Ki Cheoun (Soongsil University),
Chikako Ishizuka (Tokyo Institute of Technology),
Kyungsik Kim (Korea Aerospace University),
Tomoyuki Maruyama (Nihon University),
and
Koichi Saito (Tokyo University of Science)

The 27th International Nuclear Physics Conference (INPC 2019) @ Glasgow
29 July to 2 August, 2019
Table of contents

1. Introduction
2. Lorentz-covariant decomposition of nuclear symmetry energy
3. Relativistic mean-field Lagrangian density
4. Numerical results
5. Summary
Introduction

The nuclear symmetry energy, E_{sym}, is known to be an important physical quantity not only in nuclear physics but also in astrophysics.

Massive neutron stars
Gravitational wave

EoS for neutron stars $\Rightarrow E_{\text{sym}}$ at extremely high densities

To study the density-dependence of E_{sym}

Motivation:

- Using the relativistic Hartree-Fock (RHF) approximation, we study the effect of the Fock terms on E_{sym} not only around the saturation density but also at higher densities.
- By taking into account the Lorentz-covariant decomposition of the nucleon self-energy, we investigate how the momentum dependence due to the exchange contribution affects E_{sym}.

\Rightarrow We compare the theoretical results with the experimental data (FFG model).
Nucleon self-energies

The nucleon self-energy is given by the Lorentz-covariant form with scalar (s), time (0), and space (v) components.

$$\Sigma_N(k) = \Sigma^s_N(k) - \gamma_0 \Sigma^0_N(k) + \left(\vec{\gamma} \cdot \vec{k} \right) \Sigma^v_N \quad (N = n, p).$$

The $\Sigma^{s,0,v}_N$ are generally composed of the direct and exchange diagrams.

$$\Sigma^i_N(k) = \Sigma^{i,\text{dir}}_N + \Sigma^{i,\text{ex}}_N, \quad i = s, 0, v.$$

Inserting this form into the Dirac equation, we get the effective nucleon mass and momentum in nuclear matter.

$$M^*_N(k) = M_N + \Sigma^s_N(k), \quad k^*_N(k) = \left(k^0 + \Sigma^0_N(k), \vec{k} + \vec{k} \Sigma^v_N(k) \right).$$
Lorentz-covariant decomposition of E_{sym}

According to the Hugenholtz–Van Hove (HVH) theorem, the nucleon chemical potential in asymmetric nuclear matter should be equal to its Fermi energy. Thus, at zero temperature, the single-particle energy at Fermi surface is generally given by

$$E_N(k_{FN}) = \frac{d(\rho_B E_B)}{d\rho_B},$$

where the Fermi momentum for nucleon, k_{FN}, reads $k_{FN} = (3\pi^2 \rho_N)^{1/3}$ ($N = n$ or p). Therefore, E_{sym} can be written as

$$E_{\text{sym}} = \frac{1}{8} \rho_B \left(\frac{\partial}{\partial \rho_p} - \frac{\partial}{\partial \rho_n} \right) \left[E_p(k_{Fp}) - E_n(k_{Fn}) \right]_{\rho_p = \rho_n}.$$

In the relativistic mean-field (RMF) models, E_{sym} is divided into the kinetic and potential parts as

$$E_{\text{sym}} = E_{\text{sym}}^{\text{kin}} + E_{\text{sym}}^{\text{pot}}$$

$$= E_{\text{sym}}^{\text{kin}} + E_{\text{sym}}^{s} + E_{\text{sym}}^{0} + E_{\text{sym}}^{v} = \frac{1}{6} k_F^* E_F^* k_F + \frac{1}{8} \rho_B \left(\frac{M_N^*}{E_F^*} \partial \Sigma_{\text{sym}}^s - \partial \Sigma_{\text{sym}}^0 + \frac{k_F^*}{E_F^*} \partial \Sigma_{\text{sym}}^v \right),$$

with $k_F = k_{Fp} = k_{Fn}$, $E_F^* = \sqrt{k_F^* + M_N^*}$, and $\partial \Sigma_{\text{sym}}^{s(0)[v]} \equiv \left(\frac{\partial}{\partial \rho_p} - \frac{\partial}{\partial \rho_n} \right) \left(\Sigma_{p}^{s(0)[v]} - \Sigma_{n}^{s(0)[v]} \right)_{\rho_p = \rho_n}$.

T. Miyatsu et al. — Effect of Fock terms on nuclear symmetry energy —
According to the Hugenholtz–Van Hove (HVH) theorem, the nucleon chemical potential in asymmetric nuclear matter should be equal to its Fermi energy. Thus, at zero temperature, the single-particle energy at Fermi surface is generally given by

\[E_N(k_{FN}) = \frac{d(\rho_B E_B)}{d\rho_B}, \]

where the Fermi momentum for nucleon, \(k_{FN} \), reads \(k_{FN} = (3\pi^2 \rho_N)^{1/3} (N = n \text{ or } p) \). Therefore, \(E_{\text{sym}} \) can be written as

\[E_{\text{sym}} = \frac{1}{8} \rho_B \left(\frac{\partial}{\partial \rho_p} - \frac{\partial}{\partial \rho_n} \right) [E_p(k_{Fp}) - E_n(k_{Fn})]_{\rho_p=\rho_n}. \]

In the relativistic mean-field (RMF) models, \(E_{\text{sym}} \) is divided into the kinetic and potential parts as

\[E_{\text{sym}} = E_{\text{sym}}^{\text{kin}} + E_{\text{sym}}^{\text{pot}} \]

\[= E_{\text{sym}}^{\text{kin}} + E_{\text{sym}}^{s} + E_{\text{sym}}^{0} + E_{\text{sym}}^{v} = \frac{1}{6} k_{F}^{*} k_{F} + \frac{1}{8} \rho_B \left(\frac{M_N^{*}}{E_{F}^{*}} \partial \Sigma_{s}^{s} - \partial \Sigma_{0}^{*} + \frac{k_{F}^{*}}{E_{F}^{*}} \partial \Sigma_{v}^{s} \right), \]

with \(k_{F} = k_{Fp} = k_{Fn}, \ E_{F}^{*} = \sqrt{k_{F}^{*2} + M_N^{*2}}, \) and \(\partial \Sigma_{s}^{s}[v] \equiv \left(\frac{\partial}{\partial \rho_p} - \frac{\partial}{\partial \rho_n} \right) \left(\Sigma_{p}^{s}(0)[v] - \Sigma_{n}^{s}(0)[v] \right)_{\rho_p=\rho_n}. \)
Relativistic mean-field (RMF) Lagrangian density for uniform hadronic matter:

\[\mathcal{L} = \sum_{N=p,n} \bar{\psi}_N \left(i \gamma_\mu \partial^\mu - M_N \right) \psi_N + \mathcal{L}_M + \mathcal{L}_{\text{int}} - U_{\text{NL}}. \]

Interaction Lagrangian density: mesons (\(\sigma, \omega, \vec{\pi}, \) and \(\vec{\rho} \))

\[\mathcal{L}_{\text{int}} = \sum_{N=p,n} \left(\mathcal{L}_\sigma + \mathcal{L}_\omega + \mathcal{L}_\pi + \mathcal{L}_\rho \right). \]

- \(\mathcal{L}_\sigma = g_{\sigma N} \bar{\psi}_N \sigma \psi_N \), scalar
- \(\mathcal{L}_\omega = -g_{\omega N} \bar{\psi}_N \gamma_\mu \omega^\mu \psi_N \), vector
- \(\mathcal{L}_\pi = -\frac{f_{\pi N}}{m_\pi} \bar{\psi}_N \gamma_5 \gamma_\mu \partial^\mu \vec{\pi} \psi_N \cdot \vec{\tau}_N \), pseudovector
- \(\mathcal{L}_\rho = -g_{\rho N} \bar{\psi}_N \gamma_\mu \vec{\rho}^\mu \psi_N \cdot \vec{\tau}_N + \frac{f_{\rho N}}{2M} \bar{\psi}_N \sigma_{\mu \nu} \partial^\nu \vec{\rho}^\mu \psi_N \cdot \vec{\tau}_N \), vector
- \(\mathcal{L}_\rho = -g_{\rho N} \bar{\psi}_N \gamma_\mu \vec{\rho}^\mu \psi_N \cdot \vec{\tau}_N + \frac{f_{\rho N}}{2M} \bar{\psi}_N \sigma_{\mu \nu} \partial^\nu \vec{\rho}^\mu \psi_N \cdot \vec{\tau}_N \), tensor

The following nonlinear term is also introduced in order to reproduce the saturation properties of nuclear matter at the mean-field level:

\[U_{\text{NL}} = \frac{1}{3} g_2 \bar{\sigma}^3 + \frac{1}{4} g_3 \bar{\sigma}^4. \]
Nuclear symmetry energy at \(\rho_0 \)

\[
U^\text{SEP}_N (k, \epsilon_k) = \sum^s_N (k) - \frac{E^N_N (k)}{M^N_N} \sum^0_N (k) + \frac{1}{2M^N_N} \left(\left[\sum^s_N (k) \right]^2 - \left[\sum^0_N (k) \right]^2 \right)
\]

- **RHF1**: CD-Bonn
- **RHF2**: adjusting cutoff parameters so as to fit \(U^\text{SEP}_N \)

\[
E_{\text{sym}} = E_{\text{sym}}^{\text{kin}} + E_{\text{sym}}^{\text{pot}} = E_{\text{sym}}^{\text{kin}} + E_{\text{sym}}^{s} + E_{\text{sym}}^{0} + E_{\text{sym}}^{v}
\]

Summary: Exchange contribution mainly affects \(E_{\text{sym}}^{\text{pot}} \)

Figures

- Graph showing the dependence of \(U^\text{SEP}_N \) on \(\epsilon_k \) with data points from X.-H. Li et al. and Hama et al.
- Bar chart showing the components of \(E_{\text{sym}} \) with \(E_{\text{sym}} \approx 32.5 \) (fixed) and exchange contribution.

T. Miyatsu et al. — Effect of Fock terms on nuclear symmetry energy —
Density dependence of nuclear symmetry energy

Lorentz-covariant decomposition of $E_{\text{sym}}^{\text{pot}}$:

$$E_{\text{sym}}(\rho_B) = E_{\text{sym}}^{\text{kin}}(\rho_B) + E_{\text{sym}}^{\text{pot}}(\rho_B)$$

$$= E_{\text{sym}}^{\text{kin}}(\rho_B) + E_{\text{sym}}^{s}(\rho_B) + E_{\text{sym}}^{0}(\rho_B) + E_{\text{sym}}^{v}(\rho_B).$$

The free Fermi gas (FFG) model:

$$E_{\text{sym}}(\rho_B) = E_{\text{sym}}^{\text{kin}}(\rho_0) \left(\frac{\rho_B}{\rho_0} \right)^{2/3} + E_{\text{sym}}^{\text{pot}}(\rho_0) \left(\frac{\rho_B}{\rho_0} \right)^\gamma.$$

Constraints:

$$E_{\text{sym}}^{\text{pot}}(\rho_0) \left(\frac{\rho_B}{\rho_0} \right)^\gamma \text{ with } \gamma = 0.7^{+0.35}_{-0.3} \text{ (FFG model),}$$

- **RH**: $\gamma = 1.00$
- **RHF1**: $\gamma = 0.74$
- **RHF2**: $\gamma = 1.09$
Meson contribution to potential part

Potential part of E_{sym}:

$$E_{\text{sym}}^{\text{pot}}(\rho_B) = E_{\text{sym}}^{s}(\rho_B) + E_{\text{sym}}^{0}(\rho_B) + E_{\text{sym}}^{v}(\rho_B).$$

- **Relativistic Hartree (RH) approximation:** only ρ meson

 $$E_{\text{sym}}^{\text{pot}}(\rho_B) = E_{\text{sym}}^{0,\text{dir}}(\rho_B) = \frac{1}{2} \frac{g_{\rho}^2}{m_{\rho}^2} \rho_B.$$

- **Relativistic Hartree-Fock (RHF) approximation:**

 $$E_{\text{sym}}^{\text{pot}}(\rho_B) = E_{\text{sym}}^{0,\text{dir}}(\rho_B) + \sum_{i=s,0,v} E_{\text{sym}}^{i,\text{ex}}(\rho_B)$$

 $$= \frac{1}{2} \frac{g_{\rho}^2}{m_{\rho}^2} \rho_B + \sum_{i=s,0,v} \sum_{M=\sigma,\omega,\pi,\rho} E_{\text{sym},M}^{i,\text{ex}}(\rho_B).$$

Not only ρ meson but also σ, ω, and π mesons give influence on $E_{\text{sym}}^{\text{pot}}$ through the exchange diagrams. In particular, the σ and ω mesons play an important role in $E_{\text{sym}}^{\text{pot}}$. On the other hand, the contributions due to ρ and π mesons are extremely small even at high densities.
Summary

Motivation:

✓ Using the Lorentz-covariant decomposition of nucleon self-energies based on the HVH theorem, we have studied the effect of Fock terms on E_{sym}.

Results:

✓ Fock terms strongly affect the potential part, $E_{\text{sym}}^{\text{pot}}$.

✓ As a consequence, $E_{\text{sym}}^{\text{pot}}$ in the RHF1 case becomes consistent with the constraint from heavy-ion collision data with the ImQMD transport model.

✓ The σ and ω mesons make a significant contribution to $E_{\text{sym}}^{\text{pot}}$.

✓ Therefore, it is very important to include the exchange diagrams for understanding dense matter physics, and more precise calculations with RHF approximation are required in the future.

Thank You for Your Attention.