Recent open heavy flavor results from RHIC and LHC

Sooraj Radhakrishnan
Lawrence Berkeley National Laboratory
Relativistic Heavy Ion collisions: An excellent laboratory to study the QGP phase and QCD at extreme temperatures and energy densities.

RHIC: Au+Au, $\sqrt{S_{NN}} = 200$ GeV (Top energy)
LHC: Pb+Pb, $\sqrt{S_{NN}} = 2.76$ TeV, 5.02 TeV
Why study heavy flavor quarks?

- Mass higher than T_{QGP}, Λ_{QCD}
- Produced predominantly in initial hard-scatterings
- Production cross-sections amenable to pQCD calculations
- Ideal probes to study QGP
Heavy-ion collisions and Heavy Flavor quarks

- Understand parton energy loss mechanism in QGP
- Collisional and radiative energy loss
- Results in suppression of high p_T hadron production
Heavy-ion collisions and Heavy Flavor quarks

Why study heavy flavor quarks?

- Pressure driven collective expansion of QGP medium
- Heavy quarks interact with and gain flow from QGP

\[
\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos(n(\phi - \Phi_n))
\]
Heavy-ion collisions and Heavy Flavor quarks

Why study heavy flavor quarks?

- Total HQ conserved - ideal probes to study hadronization
- Hadronization mechanism in the presence of QGP

Sooraj Radhakrishnan
Heavy-ion collisions and Heavy Flavor quarks

Why study heavy flavor quarks?

- Large relaxation times - can carry information on initial conditions
- Probes of initial strong magnetic fields?
Heavy-ion collisions and Heavy Flavor quarks

Why study heavy flavor quarks?

- Energy loss in medium
- Anisotropic flow
- Hadronization
- Initial conditions in HIC

• Wealth of new results from RHIC and LHC

Sooraj Radhakrishnan
Heavy flavor production in p+p and p+A

- Heavy flavor production in p+p collisions well described by pQCD calculations
- Measured values close to upper edge of FONLL uncertainty bands
- Small system size in p+A collisions
- No suppression seen in p+A within uncertainties

Sooraj Radhakrishnan
Suppression in A+A collisions

- Strong suppression of high p_T charm meson production in A+A collisions
- Strong interactions and energy loss of charm quarks in QGP
- Seen for all charm hadrons

\[
R_{AA}(p_T) = \frac{dN_{AA}/dp_T}{N_{AA\text{ binary}} \times dN_{pp}/dp_T}
\]

Soojung Radhakrishnan
Suppression in A+A collisions

- Strong suppression of high p_T charm meson production in A+A collisions
- Strong interactions and energy loss of charm quarks in QGP
- Seen for all charm hadrons
- Suppression decrease towards peripheral collisions

Sooraj Radhakrishnan
• Transport models with pQCD cross-sections (BAMPS, PHSD, MC@sHQ, LBT, POWLANG) and lattice QCD inspired interaction potentials (TAMU)

• Radiative energy loss start to dominate at higher p_T, interplay of collisional and radiative at lower p_T

• Models without radiative energy loss (POWLANG, BAMPS el, TAMU) deviate from data around $p_T \sim 10$ GeV/c
• Energy loss expected to have a mass heirarchy: $\Delta E_b < \Delta E_c < \Delta E_{u,d}$

• Hint of less suppression of $b \rightarrow e$ compared to $c \rightarrow e$ at RHIC

Sooraj Radhakrishnan
Mass dependence of suppression

- Energy loss expected to have a mass hierarchy: $\Delta E_b < \Delta E_c < \Delta E_{u,d}$

- R$_{AA}$ of prompt D0 (charm hadrons) and non-prompt D0 and J/Psi (from B hadron decays) at LHC

- Hint of less suppression of b\rightarrowe compared to c\rightarrowe at RHIC

- Less suppression of B hadrons than D hadrons at LHC

Sooraj Radhakrishnan
Mass dependence of suppression

- Energy loss expected to have a mass hierarchy: $\Delta E_b < \Delta E_c < \Delta E_{u,d}$

- R_{AA} of prompt D^0 (charm hadrons) and non-prompt D^0 and J/Psi (from B hadron decays) at LHC

- Hint of less suppression of $b \rightarrow e$ compared to $c \rightarrow e$ at RHIC

- Less suppression of B hadrons than D hadrons at LHC

Sooraj Radhakrishnan

Phys. Rev. Lett. 123, 022001
Heavy flavor jets at LHC

• **R_AA of D^0 tagged jets**, consistent with that of D^0

• **Modifications in fragmentation not a large effect for D^0 R_AA**

• **Does distribution of HQ within jets change in QGP?**

• **Hints of modification of D^0 - jet correlations in QGP**
Elliptic flow of charm mesons

Collective expansion of QGP medium

HQ acquire flow as they transport through and interact with QGP

\[\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos(n(\phi - \Phi_n)) \]
Elliptic flow of charm mesons

Collective expansion of QGP medium

HQ acquire flow as they transport through and interact with QGP

- Large elliptic flow values for D mesons, comparable to that of light hadrons
- Follows NCQ scaling - suggests charm quarks flow along with QGP

Sooraj Radhakrishnan
Elliptic flow of charm mesons

- Also can constrain the charm quark diffusion coefficient in QGP
- Small values of $2\pi T D_s$, well constrained by data $\sim T = T_c$
Elliptic flow of charm mesons

- Also can constrain the charm quark diffusion coefficient in QGP
- Small values of $2\pi T D_s$, well constrained by data $\sim T = T_c$

Simultaneous description of v_2 and R_{AA} helps better separate between the models
• Hadronization via coalescence can be important in the presence of QGP
• Enhanced strangess in QGP + coalescence hadronization → D_s enhancement
Hadronization - D_s production

- Hadronization via coalescence can be important in the presence of QGP
- Enhanced strangeness in QGP + coalescence hadronization $\rightarrow D_s$ enhancement

- D_s/D^0 ratio higher in A+A compared to p+p and e+e,e+p
- Enhancement predicted by coalescence model calculations, but underpredicts data at RHIC

Sooraj Radhakrishnan
Hadronization - D_s and B_s production

- Hadronization via coalescence can be important in the presence of QGP
- Enhanced strangeness in QGP + coalescence hadronization $\rightarrow D_s$ enhancement
- Hint of enhancement also for B_s production at LHC

Sooraj Radhakrishnan

arXiv:1810.03022
Baryon production - Λ_c

- Baryon/meson ratio at low p_T valuable tool to study hadronization

- Strong enhancement of Λ_c production in $p+p$ and $p+Pb$ collisions compared to fragmentation ratios measured at high p_T

- PYTHIA with CR also underpredict Λ_c production

- How does charm baryon production evolve in heavy-ion collisions?
Baryon production - Λ_c

- Coalescence hadronization can produce further enhancement in A+A collisions

- Strong enhancement in A+A collisions compared to vacuum fragmentation values
- Coalescence model calculations are closer to data
- Enhancement higher than in p+p collisions

- Enhancement seen at RHIC larger than at LHC
Total charm cross section at RHIC

- Hadron yield ratios change, how about the total charm cross-section?

 - D^0 yields are measured down to zero p_T

 - For $D^{+/−}$, and D_s, Levy (power law) fits to measured spectra are used for extrapolation (systematics)

 - For $Λ_c$, three model fits to data are used and differences are included in systematics

<table>
<thead>
<tr>
<th>Charm Hadron</th>
<th>Cross Section $dσ/dy$ (μb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>$41 ± 1 ± 5$</td>
</tr>
<tr>
<td>D^+</td>
<td>$18 ± 1 ± 3$</td>
</tr>
<tr>
<td>D_s^+</td>
<td>$15 ± 1 ± 5$</td>
</tr>
<tr>
<td>$Λ_c^+$</td>
<td>$78 ± 13 ± 28^*$</td>
</tr>
<tr>
<td>Total</td>
<td>$152 ± 13 ± 29$</td>
</tr>
</tbody>
</table>

 * derived using $Λ_c^+/D^0$ ratio in 10-80%

<table>
<thead>
<tr>
<th>Charm Hadron</th>
<th>Cross Section $dσ/dy$ (μb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>$130 ± 30 ± 26$</td>
</tr>
</tbody>
</table>

- Suppression of D^0, enhancement of D_s and $Λ_c$

- Total charm cross-section consistent with p_T within uncertainties

Sooraj Radhakrishnan
HQ as probes of initial conditions

- Very strong EM fields at initial stages in HIC

Sooraj Radhakrishnan
HQ as probes of initial conditions

- HQ produced predominantly in initial hard scatterings
- Larger relaxation times
- Can carry information on initial conditions

- Charge dependent splitting of directed flow, $v_1 \langle p_x/p_T \rangle$ relative to RP

- Very strong EM fields at initial stages in HIC

- Model calculations predict a few percent difference in v_1 of D^0 and \bar{D}^0 after transport through QGP
HQ as probes of initial conditions

- Difference between charges consistent with zero at RHIC
- Non-zero difference seen at LHC
- Dominant charge independent contribution from initial geometry
- Need more precision measurements
Summary and Outlook

• Strong suppression and energy loss of high \(p_T \) HF hadrons in HIC
 • Disentangling energy loss mechanisms

• Large elliptic flow values
 • Together with \(R_{AA} \) provides better constrains on HQ interactions in QGP

• Hadronization mechanism
 • Modification of hadrochemistry in A+A
 • Importance of coalescence hadronization in heavy-ion collisions

• HF meson \(v_1 \) a potential tool to study the strong initial EM fields

• High precision HF measurements major focus at upcoming sPHENIX and LHC Run3
 • Dedicated high resolution HF tracking systems - ALICE ITS and sPHENIX MVTX
 • Expected integrated luminosity of \(10^{-1} \) nb (13\(^{-1} \) \(\mu \)b existing) at ALICE and 240 Billion MB events (2B existing) at sPHENIX

THANK YOU!!
Back up
Bottom flow?

- Early attempts at bottom v_2 measurements
- Suggests smaller values, but limited statistics at present

v_2 of $c \rightarrow e$ (left) and $b \rightarrow e$ (right), and of non-prompt J/Psi (bottom)
• Small systems at high multiplicity show features of collective expansion!
• Large v_2 also for HF hadrons

- Seen at RHIC and LHC

Sooraj Radhakrishnan
HF v_2 in small systems at high multiplicity

- Small systems at high multiplicity show features of collective expansion!
- Large v_2 also for HF hadrons
- Smaller v_2 values after NCQ scaling for charm compared to light hadrons in p+Pb

Sooraj Radhakrishnan
Sooraj Radhakrishnan

Λ_c/D^0 model comparisons

- Peak is shifted to lower p_T at RHIC energies in model calculations
Sooraj Radhakrishnan

$D^0 v_1$ from initial geometry

- QGP bulk is tilted in Reaction Plane as a function of rapidity
- HQ production profile is symmetric in rapidity
- Causes enhanced initial first order asymmetry in density distributions
- Viscous drag from the expanding bulk medium produces large v_1 for heavy flavor quarks