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What happens 
down here?  

ConfinementConfinement

DCSBDCSB

Colored bound states 
have never been seen 

to exist as particles 
in nature 

Chiral symmetry
appears dynamically 

violated in the 
Hadron spectrum

Emergent phenomena playing a dominant role in the real world 
dominated by the IR dynamics of QCD.



  

Quark's gap equation

Let's start by the beginning:

● Dynamical chiral symmetry breaking generates the 
“constituent-quark” masses

● This is the most important mechanism for the mass generation 
in our Universe (responsible for around 98 % of the proton 
mass)

● The effect is realized through the quark's gap equation and is 
clearly achieved through the pure theory's dynamics (nothing 
needs to be added to QCD!!)  
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4 π I (k2) 1

k2 (δμ ν−
kμk ν

k2 )

Beyond Rainbow-Ladder truncation: 
One-gluon exchange effective kernel + Tree-level quark-gluon vertex

Γμ = Γμ
BC +Γμ

ACM

Model parameters: 
Λ = 0.234 GeV
ζ = 0.55 GeV
ω ∈ [0.4,0 .6 ] GeV

Fixed by the pion decay constant

● Ball-Chiu vertex [PRD(22)1980]
● Anomalous Chromomagnetic vertex

Consistent with both linear and 
transverse STI

Quark's gap equation
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Quark's gap equation: RGI interaction

Both top-bottom and down-up approaches deliver quark-gluon effective 
interactions which compare remarkably well with each other! 5



  

Let us now carefully examine the RGI Interaction:  

D. Binosi, J. R-Q, C.D. Roberts, PRD95(2017)114009

QCD effective charge
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Let us first carefully examine the RGI Interaction:  

D. Binosi, J. R-Q, C.D. Roberts, PRD95(2017)114009

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, PLB 742 (2015) 

Remarkable QCD feature: saturation of the RG key ingredient  ̂d (0)

Define then the RGI invariant function 

D. Binosi, C. Mezrag, J. Papavassiliou, J.R-Q, C.D. Roberts, arXiv:1612.04835 

Extract the (process-independent) coupling
Using the quark gap equation   

QCD effective charge
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D. Binosi, C. Mezrag, J. Papavassiliou, J.R-Q, C.D. Roberts, arXiv:1612.04835 

QCD effective charge: comparison.
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PI-effective charge from lattice data with Nf=3 flavors at the physical point

● The ghost dressing function
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The IR running of the PI effective 
charge with momenta only depends 
on: 
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PI-effective charge from lattice data with Nf=3 flavors at the physical point

● The ghost dressing function
● The PT-BFM function L

All put together:

Less uncertainties 
(that of the gluon 
mass is only left 
here)  and still a 
better agreement 
with the world data 
for the experimental 
determination of the 
Bjorken sum-rule 
effective charge. 
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The IR running of the PI effective 
charge with momenta only depends 
on: 
 

Its strength depends also on the 
saturation point at zero-momentum of 
the gluon propagator and on the 
Taylor coupling.
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One application: pion PDF DGLAP evolution

The pion PDF can be computed as the lightfront projection of the hadronic matrix element 
of a bilocal operator  
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The evolution will thus depend on 
the scheme via the perturbative 
truncation and the usual prejudice 
is that truncation errors are 
optimally small in MS scheme.

PDG2018:
[PRD98(2018)030001]
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One application: pion PDF DGLAP evolution
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The same is obtained from the 
overlap of realistic pion 2-body 
LFWFs 

and after integration of the 
DGLAP master equation 
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Conclusions

● The PI effective charge is shown to be 
equivalent, within the IR domain, to the 
one which can be defined to get an 
“exact” (at all order in perturbations) 
DGLAP evolution for the pion PDF. 

● One can define a parameter-free 
effective charge  (completely determined 
from 2-points gauge sector), with no 
Landau pole (physical coupling showing 
an IR fixed point) and smoothly 
connecting IR and UV domains (no 
explicit matching procedure)

● It is shown to be in good agreement with 
the Bjorken-rule effective charge and with 
the coupling from the light-front 
holographic model.

ΛQCD=0.234 ;GeV ζH≡mα →ζ2=5.2 GeV
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