Exploiting electron parity violation

From Standard Model tests to dark matter detection predictions

O. Moreno

Dpto. Estructura de la Materia & IPARCOS, Facultad CC. Físicas, Universidad Complutense de Madrid, Spain

Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Spain

T. W. Donnelly

Center for Theoretical Physics and Laboratory for Nuclear Science Massachusetts Institute of Technology, U.S.
Summary

• Electroweak interactions
• Parity-violating electron scattering
• Coherent neutrino scattering
• Connection between parity-violating electron scattering and coherent neutrino scattering
• WIMP direct detection
Electroweak interactions

Electron scattering

$\beta^p_V = 0.04$

$\beta^n_V = -0.5$

Neutrino scattering

$Z^0 (G_F)$

Electromagnetic + Weak neutral

$\left[\bar{f} q^f \gamma^\mu f \right] A_\mu$

$\alpha = \frac{g^2}{4\pi}$

$\sim 10^{-2}$

$G_F = \frac{\sqrt{2}}{8} \left(\frac{g_W}{m_W} \right)^2$

$\sim 10^{-5}$ GeV$^{-2}$

Currents

Vector

Axial - Vector

Couplings

Weak neutral

$\left[\bar{f} \left(c_V^f \gamma^\mu - c_A^f \gamma^\mu \gamma^5 \right) f \right] Z^0_\mu$

$G_F = \frac{\sqrt{2}}{8} \left(\frac{g_W}{m_W} \right)^2$

$\sim 10^{-5}$ GeV$^{-2}$
Parity-violating electron scattering

Definition

Parity-violating (helicity) asymmetry:

\[A = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \]

Polarized electron (clockwise) → Nuclear target

Polarized electron (anticlockwise)

Mirror

Mirror image

\[q \approx 2E \sin(\theta/2) \]
Parity-violating electron scattering

Definition

Parity-violating (helicity) asymmetry:

\[A = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \]
Parity-violating electron scattering

Definition

Parity-violating (helicity) asymmetry:

\[A = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \]

Within plane wave Born approximation and for isospin-0 (N = Z), spin-0 targets, the ‘reference asymmetry’ is:

\[A = A^\text{ref} \equiv -\frac{G_F}{\sqrt{2}\pi \alpha} |Q|^2 |a^e_A| \sin^2 \theta_W \approx 10^{-6} \]

Assumptions

- Only one photon and one Z0 are exchanged.
- Electron wave functions are not distorted by the target charge.
- Target state is spin-0, isospin-0 (non isospin mixing).
Parity-violating electron scattering

Definition

Parity-violating (helicity) asymmetry:

\[\mathcal{A} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \]

For \(N \neq Z \) nuclei:

\[\mathcal{A} \approx -\frac{G_F}{\sqrt{2} 2\pi \alpha} |Q|^2 a_A^e \beta_n^V \frac{N}{Z} \frac{F_n}{F_p} \]
Parity-violating electron scattering

Applications

• Determination of the neutron radius and neutron skin of heavy nuclei (PREX, CREX experiments), isospin mixing, neutron-rich matter equation of state, …

• Extrapolation to properties of neutron stars: radius, transition density, size of crust, …
Parity-violating electron scattering

Applications

Nucleon densities (Form factors) PV asymmetry

Neutron skin thickness

$r_n - r_p$
Parity-violating electron scattering

Applications

Possible relationship between nuclear structure and neutron star structure through the equation of state of neutron-rich matter:

- The larger the **neutron skin thickness** of nuclei, the larger the **radius** of neutron stars.

- The larger the **neutron skin thickness** of nuclei, the smaller the **crust thickness** of neutron stars.

![Graph showing density profiles of proton and neutron densities in 208Pb.](image)
Parity-violating electron scattering

Applications

• Accurate evaluation of the weak mixing angle, the size and momentum-dependence of higher-order electroweak radiative corrections, …

Related to the current interest in low-energy, high-luminosity polarized electron beams for high precision parity-violating experiments: MESA@Mainz, FEL@JLab, Cβ@Cornell.

Accurate theoretical knowledge is required of the size and uncertainty of the nuclear and nucleon structure effects involved.
Parity-violating electron scattering

Analysis

• Computation of nuclear and nucleon structure effects on the parity-violating observables in electron scattering. Focus on a carbon 12 target (spin 0, $N = Z$).

• Estimation of the theoretical uncertainties related to the previous calculations.

• Search for the optimal kinematic conditions to achieve the required theoretical and statistical uncertainties.
Parity-violating electron scattering

Analysis
Parity-violating electron scattering

Absolute effect of feature X

Relative effect of feature X

$$
\Gamma^X = \frac{A^X - A^{\text{ref}}}{A^{\text{ref}}}
$$
Parity-violating electron scattering

Analysis

\[\Gamma^X = \frac{A^X - A^{\text{ref}}}{A^{\text{ref}}} \]

\[\Delta \Gamma^X = \Gamma^X_a - \Gamma^X_b = \frac{A^{X_a} - A^{X_b}}{A^0} = \frac{\Delta A^X}{A^0} \]
Parity-violating electron scattering

Analysis

- Distortion of the electron wave function due to the Coulomb field created by the nuclear charge distribution: from plane-wave (PW) to distorted-wave (DW) calculations.

- Isospin mixing in the nucleus due to the Coulomb interaction acting differently on protons and neutrons.

- Strangeness content of the nucleons modifying the isoscalar (but not the isovector) nuclear responses.

- Meson exchange currents among the nucleons affecting differently the isoscalar and the isovector nuclear responses.

- Inelastic transitions to excited nuclear states differing significantly from the ground state (e.g. different nominal isospin).
Analysis

Summary of sizes and uncertainties

(150 MeV incident electron energy, 25° - 45° scattering angle range)

<table>
<thead>
<tr>
<th>Contribution to PV asymmetry</th>
<th>Relative size</th>
<th>Relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coulomb distortion of projectile wave function</td>
<td>3 %</td>
<td>0.01 %</td>
</tr>
<tr>
<td>Nuclear isospin mixing (electromagnetic origin)</td>
<td>0.4 %</td>
<td>0.05 %</td>
</tr>
<tr>
<td>Nucleon strangeness content (mainly electric)</td>
<td>0 - 1 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Meson exchange currents</td>
<td>< 0.1 %</td>
<td>< 0.1 %</td>
</tr>
<tr>
<td>Inelastic contributions</td>
<td>< 0.1 %</td>
<td>--</td>
</tr>
</tbody>
</table>
Coherent neutrino scattering

Definition

• Weak neutral current process, neutrino in and neutrino out: only nuclear recoil can be detected.

• The target nucleus remains in its ground state (elastic scattering).

• The cross section is roughly proportional to A^2.

• Larger when the wavelength corresponding to the momentum transfer is similar to the nuclear size ($q \approx 70$ MeV for 12C).

• It is the only elastic contribution for even-even nuclear targets, and usually dominant for other targets.

\[
\left(\frac{d\sigma}{d\Omega} \right)_{\nu,\nu}^{ref} = \frac{G_F^2}{2\pi^2} \left[(a_A^\nu)^2 + (a_V^\nu)^2 \right] \varepsilon_{\nu}^2 \cos^2(\theta_\nu/2) f_{rec}^{-1} A^2 \sin^4 \theta_W
\]
Coherent neutrino scattering

Applications

- Determination of electroweak constants at low momentum transfer as well as higher-order corrections.
- Testing the universality of the weak interaction for charged and neutral leptons.
- Analysis of structure details of the target (e.g. axial structure).
- Astrophysical processes (e.g. stellar core collapse, supernova neutrinos).
- Extension to direct detection of certain types of dark matter particles.
Parity violating electron and coherent neutrino scatterings

• Relationship between coherent electron-nucleus and coherent neutrino-nucleus cross-sections in PWBA:

$$\left(\frac{d\sigma}{d\Omega} \right)_{(\nu,\nu)} = A^2_{(e,e)} \left(\frac{d\sigma}{d\Omega} \right)_{(e,e)}$$

Deviations from this prediction:
- Coulomb distortion.
- Effect of higher order corrections.
- Non-SM couplings of neutrinos to Z^0.

• Relationship between their relative uncertainties:

$$\mathcal{E} \left(\frac{d\sigma}{d\Omega} \right)_{(\nu,\nu)} \approx 2 \mathcal{E} A_{(e,e)}$$
Parity violating electron and coherent neutrino scatterings
WI(M)Ps: Weak interacting (massive) particles
- Weak-like interactions (like neutrinos): the current has vector and axial components.
- May have much heavier masses than Standard Model neutrinos.
- Examples: supersymmetric particles (neutralinos), sterile neutrinos.

\[|\nu_a\rangle = \cos \theta |\nu_1\rangle + \sin \theta |\nu_2\rangle \]
\[|\nu_b\rangle = -\sin \theta |\nu_1\rangle + \cos \theta |\nu_2\rangle \]

\[|\nu_1\rangle, |\nu_2\rangle, |\nu_3\rangle, |\nu_4\rangle \]

\[\begin{pmatrix} \nu_e \\ e \end{pmatrix}, \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}, \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}, \begin{pmatrix} \nu_s \\ - \end{pmatrix} \]
WIMP - ^{12}C elastic scattering differential cross sections as a function of momentum transfer q (proportional to nuclear recoil energy), for several WIMP velocities β and WIMP mass 100 MeV.

WI(M)P direct detection
Conclusions

Parity violation in electron scattering

Nuclear structure:
- radius, neutron skin, isospin mixing

Nucleon structure:
- form factors, strangeness content

Standard Model tests and parameters

Neutrino-nucleus coherent scattering

WI(M)P direct detection

Nuclear matter equation of state, neutron star radius and structure

References: