A clear signature of the breakup modes for 9Be on a proton target at 5.6 MeV/nucleon

Onoufriios Sgouros
INFN – Laboratori Nazionali del Sud

29th of July - 2nd of August 2019, Scottish Event Campus, Glasgow, United Kingdom
Outline

- Introduction
- Motivation
- Experimental setup
- Identification of the breakup channel
- Breakup simulations – the algorithm MULTIP
- Results
- Concluding Remarks
Borromean Rings – Symbolism throughout history

- Borromean Rings: A knot composed of 3 indissolubly linked rings.
- Symbolisms throughout history
- Odin's Triangle: Related with the God’s ability to control the human mind.
- Symbol of the Holy Trinity.
- Representation of the timeline: "Past", "Present", "Future".

Valknut symbol related with Norse God Odin

Borromean rings as a symbol of the Christian Trinity
Introduction

- **Weakly bound** nuclei are characterized by low binding energies and pronounced cluster structures. Such features may enhance direct reactions especially in the vicinity of the Coulomb barrier.

- **Our Previous Studies**: Elastic Scattering and breakup for the $^6\text{Li}+p$ and $^7\text{Li}+p$ systems. The data were analyzed under the Continuum Discretized Coupled Channels (CDCC) framework.
Our previous studies

$^6\text{Li}+p$

V. Soukeras et al., PRC 95, 054614 (2017)

$^7\text{Li}+p$

A. Pakou et al., PRC 95, 044615 (2017)
Motivation

- **9Be nucleus:**
 a) The only **stable weakly bound Borromean** nucleus.
 b) Contributes to the synthesis of 12C via the 9Be($\alpha,n)^{12}$C reaction as well as to higher mass nuclei via the r-process path.

9Be breakup modes

- 9Be* \rightarrow $\alpha + \alpha + n$
- 9Be* \rightarrow 8Be + n \rightarrow $\alpha + \alpha + n$
- 9Be* \rightarrow 5He + α \rightarrow $\alpha + \alpha + n$

Many studies have been devoted for the determination of the strength of each breakup mode but, contradictory results are reported.

E. Gete et al., PRC 61, 064310 (2000)
L. Buchmann et al., PRC 63, 034303 (2001)
P. Papka et al., PRC 75, 045803 (2007)
B. R. Fulton et al., PRC 70, 047602 (2004)
Y. Prezado et al., PLB 618, 43 (2015)
Experimental Setup

- The experiment was performed at the MAGNEX facility of INFN-LNS.
 MAGNEX Focal Plane Detector (FPD)
 \(\Delta E-E\) telescope of the EXPADDES array.

- **FPD**: Excellent energy, angular and mass resolution.
 M. Cavallaro et al., EPJA 48, 59 (2012)

- **EXPADDES**:
 \(\Delta E\) DSSSD detector 300\(\mu\)m
 Pad detector 300\(\mu\)m
 D. Pierroutsakou et al., NIMA 834, 46 (2016)

F. Cappuzzello et al., EPJA 52, 167 (2016)

see talks of
F. Cappuzzello and S. Calabrese
Identification of the Breakup events

- The identification of the breakup channel was performed by means of an event by event code.

 Triple Coincidence

 α_1-particle @ MAGNEX \rightarrow α_2-particle @ EXPADES \rightarrow Proton @ EXPADES

- The energy of the undetected neutron was determined by applying the momentum conservation.

- Additional parameters like the relative energy or the two α-particles or the excitation energy of 9Be were also reconstructed.
Breakup Simulations

- The coincidence spectra for each breakup mode were simulated via the M.C. algorithm MULTIP.
 O. Sgouros et al., EPJA 53, 165 (2017)

- MULTIP has been already used and validated with previous experimental data.
 V. Soukeras et al., PRC 95, 054614 (2017)
 A. Pakou et al., PRC 95, 044615 (2017)
 O. Sgouros et al., PRC 94, 044623 (2016)

- Simulation Steps
 a) Evaluation of the energies and momenta of the breakup fragments in the LAB frame by applying a Galilean transformation and an axis rotation.
 b) Evaluation of the energies and momenta of the breakup fragments in the LAB frame by applying a Galilean transformation and an axis rotation.
 c) Evaluation of the energies and momenta of the breakup fragments in the LAB frame by applying a Galilean transformation and an axis rotation.

A similar procedure was also followed for the simulation of the other decay modes.
Deconvolution of the proton spectrum

Excellent agreement between experimental and simulated proton spectra
Summary

• **Exclusive breakup measurements** for the **Borromean 9Be** on a proton target were performed at 5.6 AMeV.

• The recoiling proton spectra were analyzed in a **full kinematical approach** and the three breakup modes of 9Be were identified by using extensive Monte Carlo simulations.

• Detection efficiencies for each breakup mode were determined via code MULTIP and the rate of each mode was deduced.

• The strongest contribution to the 9Be breakup was found to be the 5He + α channel, while lesser contributions are attributed to the 4He + 4He + n and the 8Be+n modes.

 In agreement with E. Gete et al. and Y. Prezado et al.

• Our results exclude the contribution of the breakup via the 8Be g.s.

• For our energy, the breakup at the 8Be+n channel proceeds via the $5/2^-$ 2.43 MeV excited state of 9Be.
Collaborators

A. Pakou1, O. Sgouros2, F. Cappuzzello2,3, L. Acosta4,5, C. Agodi2, A. Boiano6, S. Calabrese2,3, D. Carbone2, M. Cavallaro2, N. N. Deshmukh2, A. Foti2, A. Hacisalihoglu2, N. Keeley7, M. La Commara6,8, I. Martel9, M. Mazzocco10,11, A. Muoio2, C. Parascandolo6, D. Pierroutsakou6, K. Rusek12, A. M. Sanchez-Benitez13, G. Santagati2, V. Soukera2, G. Souliotis14, A. Spatafora2, E. Strano10, D. Torreti2, A. Trzcinska12

1Department of Physics and HINP, The University of Ioannina, Ioannina, Greece
2INFN Laboratori Nazionali del Sud, Catania, Italy
3Dipartimento di Fisica e Astronomia “Ettore Majorana”, Universita di Catania, Catania, Italy
4Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico
5INFN - Sezione di Catania, Catania, Italy
6INFN - Sezione di Napoli, Napoli, Italy
7National Centre for Nuclear Research, Otwock, Poland
8Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”, Napoli, Italy
9Department of Physics, University of Liverpool, Liverpool, United Kingdom
10Dipartimento di Fisica e Astronomia, Universita di Padova, Padova, Italy
11INFN - Sezione di Padova, Padova, Italy
12Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
13Centro de Estudios Avanzados en Fisica, Matematicas y Computacion (CEAFMC), Department of Integrated Sciences, University of Huelva, Spain
14Department of Chemistry, National and Kapodistrian University of Athens and HINP, Athens, Greece

\textbf{Thank you very much for your attention}