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Motivations: Neutrino Physics

- measurement of CP violation in the leptonic 
mixing matrix
 - improved accuracy for oscillation angles
 - neutrino mass ordering (NH or IH) 

through appearance and disappearance of neutrinos 
of given flavour. 
Detectors are made of complex nuclei (C, O, Ar,…) 
and need reliable nuclear models for data analyses.

Essential total systematic uncertainty <3% for 
DUNE/T2HK

Large systematic uncertainty comes from 
modelling of neutrino-nucleus interactions.

DUNE

T2K

1. QP disappearance measurement 
2 goals for T2K and NOvA experiments

(1) precision measurement for 'm2
PW and sin22T23 through QP events

- Accurate neutrino energy reconstruction
(2) Qe appearance measurement
- Careful rejection of background reactions
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Neutrino energy —> mass-squared splitting (position)
                                  mixing angle (amplitude)

Problem: �  is not known. It must be reconstructed 
               using a nuclear model.

Eν

1. Interpretation of long baseline neutrino experiments



Motivations: Nuclear Physics
2. Neutrinos as a probe of nuclear structure and dynamics

 - neutrinos can provide useful information on the nucleus, complementary to what can be known from charged 
lepton- and photon-nucleus scattering

EM CC NC

• From the theoretical point of view the �  and �  processes are strictly related:

- the vector EM and weak currents are connected by CVC
- however, neutrinos probe both the vector and  the axial currents: richer structure of the cross section

A good nuclear model must be able to describe simultaneously the two processes.
Validation against electron scattering data is a necessary (albeit not sufficient) test and a valid 
benchmark for nuclear models to be used in neutrino studies.
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Inclusive: �  
only the outgoing lepton is observed

(νμ, μ) Semi-inclusive: �  
�  and �  detected in coincidence

(νμ, μX)
μ X

A good nuclear model should also be able to describe both inclusive and semi-inclusive processes.
The latter are far more sensitive to the detailed treatment of nuclear structure and dynamics.



Formalism
Double differential neutrino (+) or antineutrino (-) Charged Current cross section on a nucleus
Inclusive case: only the final lepton is detected, e.g. �(νμ, μ)

Rosenbluth-like separation: 
5 response functions

Each response has vector and axial components, from V and A leptonic and hadronic currents and depends on 2 variables

RK = RVV
K + RAA

K , K = CC, CL, LL, T
RT′� = RVA

T′�

Comparison with electron scattering (e,e’)

dσ
dkedΩe

= σMott (vLRVV
L + vT RVV

T )

only 2 vector responses

Semi-inclusive case  � : 

10 responses, 5 variables

(νl, lN )

̂z = ̂q
[ dσ

dkμdΩμ ]
±

∼ ημνWμν = σ0 (VCCRCC + 2VCLRCL + VLLRLL + VT RT ± VT′ �RT′�)

σ0 =
G4

F cos2 θC

2π2 (kμ cos
θ̃μ

2 )
2

�  nuclear current, � nuclear statesJμ | i, f >

�  leptonic tensorημν

� hadronic tensorWμν = ∑ δ(Ef − Ei − ω) < f |Jμ)Q) | i >* < f |Jν(Q) | i >

RK ≡ RK(q, ω)



Electron versus neutrino-nucleus scattering

- � : the incoming electron energy is well determined 
and different channels can be clearly identified by 
knowing the energy and momentum transfer   

(e, e′�)

K. Mahn et al., Ann.Rev.Nucl.Part.Sci. 68 (2018)

• The experimental situation for electron and neutrino scattering is different

- � : the neutrino energy is broadly distributed 
in the neutrino beam and different channels and 
different nuclear effects can contribute to the same 
kinematics of the outgoing lepton

(νl, l)

�  GeV: relativistic nuclear models are neededEν ∼ 1



Motivation

Since E‹ is not exactly know, CC neutrino-nucleus scattering is a multi-scale problem: di�erent
processes contribute to the measured cross section, depending on the energy region:

response.png

Quasi-elastic scattering (CCQE): ‹l n æ l≠p, ‹̄l p æ l+n
Two-nucleon knockout: ‹l NN æ l≠NN, ‹̄l NN æ l+NN
Resonance production: ‹l p æ l≠�++, �++ æ pfi+ and ‹̄l n æ l+�≠, �≠ æ nfi≠,

Deep inelastic scattering ‹l /‹̄l (k) + N(p) æ µû(kÕ) + X(pÕ)
Coherent meson production ‹l + A æ l≠ + m+ + A, ‹̄l + A æ l+ + m≠ + A with
m± = fi±, K±, fl±, . . .
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Neutrino-nucleus reactions for ν oscillation experiments

Challenges for theoretical nuclear models

➠ Modeling of nuclear structure giving the initial kinematics and dynamics of bound nucleons
to provide final leptons and hadrons kinematics (full semi-inclusive models) and accurate FSI.
➠ Expressing the nuclear model to be succesfully incorporated in neutrino event generators.
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production background.
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Nuclear response to electroweak probes

Neutrino beams are not monochromatic: multi-scale problem
When integrating over the neutrino flux, different processes contribute to the cross section, depending on the 
energy transferred from the neutrino to the nucleus 
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Figure 5.2: DIS process for electromagnetic e-p reactions described in terms of inelastic structure
functions (left panel) and of the quark-parton model (right panel).

5.3.1 Extension to the weak sector

The description of the deep-inelastic regime for weak interactions implies the analysis of an ad-
ditional structure function, F3(W3), related to the parity violating contribution associated to the
V − A interference. An accurate determination of this weak function is hard to achieve from neu-
trino experiments as well as from parity-violating electron scattering [131, 132] due to the large
uncertainties associated to the cross section measurements. Nevertheless, within the quark-parton
model, we can establish a relationship among the electromagnetic and weak structure functions
and between F2 and F3 [74, 133, 134]. This is based on the assumption that the corresponding
structure functions Wi can be written in terms of quark Q and antiquark Q distributions [135, 136]

F2 = νW2 = Q + Q (5.49)
F3 = xνW3 = Q − Q (5.50)

and, hence,
xνW3 = νW2 − 2Q . (5.51)

For electron scattering, the isoscalar F2 structure function of the nucleon, defined as the average
of the proton and neutron structure functions, is given (at leading order in αs and for three flavors)
by
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where u(u),d(d) and s(s) are the distributions for the up, down and strange quarks (antiquarks),
respectively. The quark distributions are defined to be those in the proton and the factors 5/18
and 1/9 arise from the squares of the quark charges. For neutrino scattering, the corresponding F2
structure function is given by

FνN
2 = x(u + u + d + d + s + s) , (5.53)

where quark charges are not considered. In the moderate and large-x region, where strange quarks
are suppressed, the weak and electromagnetic F2 structure functions approximately satisfy,

FeN
2 ≈

5x

18

(

u + u + d + d
)

≈
5

18
FνN

2 . (5.54)

Under this assumption, which has been analyzed in connection with experimental results [135,
137–139], one can readily obtain the weak structure functions from the existing parametrization of
the electromagnetic structure functions and the antiquark distribution.1

1In this work, the inelastic cross sections are only calculated and compared with data for electromagnetic reactions.
Their extension to the weak sector and the construction of the appropriate isoscalar and isovector contributions needed
for CC and NC neutrino reactions will be accounted for in further works.
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7.1.1 MiniBooNE flux-integrated cross sections

In this section, we apply the SuSAv2-MEC model to the study of neutrino and antineutrino CCQE
MiniBooNE double-differential cross sections. Unlike the total flux-unfolded cross section that
is not measured directly and largely depends on model assumptions, the flux-integrated double
differential cross section implies minimal model dependence although requires the convolution
of the cross section over the energy spectrum of the neutrino flux. This is obtained through the
following procedure:

d2σ

dTµd cos θµ
=

1
Φtot

∫ [
d2σ

dTµd cos θµ

]
Eν

Φ(Eν)dEν , (7.4)

where
[

d2σ

dTµd cos θµ

]
Eν

is the double differential cross section for a given neutrino energy Eν and

Φtot is the neutrino flux integrated over all neutrino energies. A similar expression also applies to
the antineutrino case.

In Figs. 7.3 – 7.5 we show the double differential cross section averaged over the neutrino (an-
tineutrino) energy flux against the kinetic energy of the final muon. We represent a large variety
of kinematical situations where each panel refers to results averaged over a particular muon an-
gular bin. Notice that the mean energy of the MiniBooNE νµ (νµ) flux is 788 (665) MeV which
requires a relativistic treatment of the process. In Figs. 7.3 – 7.5 we show results for the pure QE
response (red dot-dashed line) and the total contribution of the 2p-2h MEC (orange dashed line),
i.e., including vector and axial terms in the three responses, L,T and T ′. Finally, the total response
(QE+2p-2h MEC) is represented by the solid blue line.

As observed, the model tends to overpredict the data for the most forward angles, i.e., 0.9 ≤
cos θµ ≤ 1. This corresponds to very small energy and momentum transfers, a kinematic situa-
tion where “quasi-free" scattering is highly questionable. However, note how well the pure QE
response fits the data, in particular, for neutrinos. As the scattering angle increases, the theoretical
prediction including both the QE and the 2p-2h MEC effects agrees well with the data. This is the
case for neutrinos and antineutrinos (Fig. 7.3 and Fig. 7.5) at angles below 90◦. On the contrary, the
discrepancy between theory and data tends to increase as θµ gets larger (Fig. 7.4 and bottom panels
in Fig. 7.5). Notice, however, that in these situations only a small number of data points with large
uncertainties exist and the cross section is much smaller. A possible explanation for these results
at very backward kinematics, i.e higher q values, particularly for neutrino scattering, might be due
to the lack of MEC-correlations interference in our description. Nevertheless, similar results can
also be found in [163] where MEC-correlation interferences are considered but including some
approximations in the relativistic treatment of the 2p-2h MEC contributions. In this sense, effects
of relevance at backward kinematics beyond IA and 2p-2h MEC contributions in the analysis of
the MiniBooNE experimental data are not excluded.

Results in Figs. 7.3 – 7.5 clearly show the relevant role played by effects beyond the impulse
approximation. In particular, 2p-2h MEC contributions are essential to describe data. Their relative
percentage at the maximum, compared with the pure QE response, being of order 25 − 35%.
The relative strength associated with 2p-2h MEC gets larger for increasing values of the angle,
particularly, in the case of antineutrinos. Note that, in spite of the quite different neutrino and
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Figure 5.2: DIS process for electromagnetic e-p reactions described in terms of inelastic structure
functions (left panel) and of the quark-parton model (right panel).

5.3.1 Extension to the weak sector

The description of the deep-inelastic regime for weak interactions implies the analysis of an ad-
ditional structure function, F3(W3), related to the parity violating contribution associated to the
V − A interference. An accurate determination of this weak function is hard to achieve from neu-
trino experiments as well as from parity-violating electron scattering [131, 132] due to the large
uncertainties associated to the cross section measurements. Nevertheless, within the quark-parton
model, we can establish a relationship among the electromagnetic and weak structure functions
and between F2 and F3 [74, 133, 134]. This is based on the assumption that the corresponding
structure functions Wi can be written in terms of quark Q and antiquark Q distributions [135, 136]

F2 = νW2 = Q + Q (5.49)
F3 = xνW3 = Q − Q (5.50)

and, hence,
xνW3 = νW2 − 2Q . (5.51)

For electron scattering, the isoscalar F2 structure function of the nucleon, defined as the average
of the proton and neutron structure functions, is given (at leading order in αs and for three flavors)
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where u(u),d(d) and s(s) are the distributions for the up, down and strange quarks (antiquarks),
respectively. The quark distributions are defined to be those in the proton and the factors 5/18
and 1/9 arise from the squares of the quark charges. For neutrino scattering, the corresponding F2
structure function is given by

FνN
2 = x(u + u + d + d + s + s) , (5.53)

where quark charges are not considered. In the moderate and large-x region, where strange quarks
are suppressed, the weak and electromagnetic F2 structure functions approximately satisfy,
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Under this assumption, which has been analyzed in connection with experimental results [135,
137–139], one can readily obtain the weak structure functions from the existing parametrization of
the electromagnetic structure functions and the antiquark distribution.1

1In this work, the inelastic cross sections are only calculated and compared with data for electromagnetic reactions.
Their extension to the weak sector and the construction of the appropriate isoscalar and isovector contributions needed
for CC and NC neutrino reactions will be accounted for in further works.
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Φtot is the neutrino flux integrated over all neutrino energies. A similar expression also applies to
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In Figs. 7.3 – 7.5 we show the double differential cross section averaged over the neutrino (an-
tineutrino) energy flux against the kinetic energy of the final muon. We represent a large variety
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As observed, the model tends to overpredict the data for the most forward angles, i.e., 0.9 ≤
cos θµ ≤ 1. This corresponds to very small energy and momentum transfers, a kinematic situa-
tion where “quasi-free" scattering is highly questionable. However, note how well the pure QE
response fits the data, in particular, for neutrinos. As the scattering angle increases, the theoretical
prediction including both the QE and the 2p-2h MEC effects agrees well with the data. This is the
case for neutrinos and antineutrinos (Fig. 7.3 and Fig. 7.5) at angles below 90◦. On the contrary, the
discrepancy between theory and data tends to increase as θµ gets larger (Fig. 7.4 and bottom panels
in Fig. 7.5). Notice, however, that in these situations only a small number of data points with large
uncertainties exist and the cross section is much smaller. A possible explanation for these results
at very backward kinematics, i.e higher q values, particularly for neutrino scattering, might be due
to the lack of MEC-correlations interference in our description. Nevertheless, similar results can
also be found in [163] where MEC-correlation interferences are considered but including some
approximations in the relativistic treatment of the 2p-2h MEC contributions. In this sense, effects
of relevance at backward kinematics beyond IA and 2p-2h MEC contributions in the analysis of
the MiniBooNE experimental data are not excluded.

Results in Figs. 7.3 – 7.5 clearly show the relevant role played by effects beyond the impulse
approximation. In particular, 2p-2h MEC contributions are essential to describe data. Their relative
percentage at the maximum, compared with the pure QE response, being of order 25 − 35%.
The relative strength associated with 2p-2h MEC gets larger for increasing values of the angle,
particularly, in the case of antineutrinos. Note that, in spite of the quite different neutrino and
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Figure 5.2: DIS process for electromagnetic e-p reactions described in terms of inelastic structure
functions (left panel) and of the quark-parton model (right panel).

5.3.1 Extension to the weak sector

The description of the deep-inelastic regime for weak interactions implies the analysis of an ad-
ditional structure function, F3(W3), related to the parity violating contribution associated to the
V − A interference. An accurate determination of this weak function is hard to achieve from neu-
trino experiments as well as from parity-violating electron scattering [131, 132] due to the large
uncertainties associated to the cross section measurements. Nevertheless, within the quark-parton
model, we can establish a relationship among the electromagnetic and weak structure functions
and between F2 and F3 [74, 133, 134]. This is based on the assumption that the corresponding
structure functions Wi can be written in terms of quark Q and antiquark Q distributions [135, 136]

F2 = νW2 = Q + Q (5.49)
F3 = xνW3 = Q − Q (5.50)

and, hence,
xνW3 = νW2 − 2Q . (5.51)

For electron scattering, the isoscalar F2 structure function of the nucleon, defined as the average
of the proton and neutron structure functions, is given (at leading order in αs and for three flavors)
by

FeN
2 =

1
2

(

F
ep
2 + Fen

2

)

=
5x

18

(

u + u + d + d
)

+
x

9
(s + s) , (5.52)

where u(u),d(d) and s(s) are the distributions for the up, down and strange quarks (antiquarks),
respectively. The quark distributions are defined to be those in the proton and the factors 5/18
and 1/9 arise from the squares of the quark charges. For neutrino scattering, the corresponding F2
structure function is given by

FνN
2 = x(u + u + d + d + s + s) , (5.53)

where quark charges are not considered. In the moderate and large-x region, where strange quarks
are suppressed, the weak and electromagnetic F2 structure functions approximately satisfy,

FeN
2 ≈

5x

18

(

u + u + d + d
)

≈
5

18
FνN

2 . (5.54)

Under this assumption, which has been analyzed in connection with experimental results [135,
137–139], one can readily obtain the weak structure functions from the existing parametrization of
the electromagnetic structure functions and the antiquark distribution.1

1In this work, the inelastic cross sections are only calculated and compared with data for electromagnetic reactions.
Their extension to the weak sector and the construction of the appropriate isoscalar and isovector contributions needed
for CC and NC neutrino reactions will be accounted for in further works.
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7.1.1 MiniBooNE flux-integrated cross sections

In this section, we apply the SuSAv2-MEC model to the study of neutrino and antineutrino CCQE
MiniBooNE double-differential cross sections. Unlike the total flux-unfolded cross section that
is not measured directly and largely depends on model assumptions, the flux-integrated double
differential cross section implies minimal model dependence although requires the convolution
of the cross section over the energy spectrum of the neutrino flux. This is obtained through the
following procedure:

d2σ

dTµd cos θµ
=

1
Φtot

∫ [
d2σ

dTµd cos θµ

]
Eν

Φ(Eν)dEν , (7.4)

where
[

d2σ

dTµd cos θµ

]
Eν

is the double differential cross section for a given neutrino energy Eν and

Φtot is the neutrino flux integrated over all neutrino energies. A similar expression also applies to
the antineutrino case.

In Figs. 7.3 – 7.5 we show the double differential cross section averaged over the neutrino (an-
tineutrino) energy flux against the kinetic energy of the final muon. We represent a large variety
of kinematical situations where each panel refers to results averaged over a particular muon an-
gular bin. Notice that the mean energy of the MiniBooNE νµ (νµ) flux is 788 (665) MeV which
requires a relativistic treatment of the process. In Figs. 7.3 – 7.5 we show results for the pure QE
response (red dot-dashed line) and the total contribution of the 2p-2h MEC (orange dashed line),
i.e., including vector and axial terms in the three responses, L,T and T ′. Finally, the total response
(QE+2p-2h MEC) is represented by the solid blue line.

As observed, the model tends to overpredict the data for the most forward angles, i.e., 0.9 ≤
cos θµ ≤ 1. This corresponds to very small energy and momentum transfers, a kinematic situa-
tion where “quasi-free" scattering is highly questionable. However, note how well the pure QE
response fits the data, in particular, for neutrinos. As the scattering angle increases, the theoretical
prediction including both the QE and the 2p-2h MEC effects agrees well with the data. This is the
case for neutrinos and antineutrinos (Fig. 7.3 and Fig. 7.5) at angles below 90◦. On the contrary, the
discrepancy between theory and data tends to increase as θµ gets larger (Fig. 7.4 and bottom panels
in Fig. 7.5). Notice, however, that in these situations only a small number of data points with large
uncertainties exist and the cross section is much smaller. A possible explanation for these results
at very backward kinematics, i.e higher q values, particularly for neutrino scattering, might be due
to the lack of MEC-correlations interference in our description. Nevertheless, similar results can
also be found in [163] where MEC-correlation interferences are considered but including some
approximations in the relativistic treatment of the 2p-2h MEC contributions. In this sense, effects
of relevance at backward kinematics beyond IA and 2p-2h MEC contributions in the analysis of
the MiniBooNE experimental data are not excluded.

Results in Figs. 7.3 – 7.5 clearly show the relevant role played by effects beyond the impulse
approximation. In particular, 2p-2h MEC contributions are essential to describe data. Their relative
percentage at the maximum, compared with the pure QE response, being of order 25 − 35%.
The relative strength associated with 2p-2h MEC gets larger for increasing values of the angle,
particularly, in the case of antineutrinos. Note that, in spite of the quite different neutrino and

Dominate present 
neutrino experiments
(T2K, MiniBooNE, MINERvA)
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Basic requirements for a “good” nuclear model to be used in neutrino oscillation analyses:

relativistic
compare well with electron scattering data
implementable in Monte Carlo generators
consistent description of the full spectrum covered by the �  flux (the most challenging)ν

What we want from a nuclear model

Quasi-elastic region: the Impulse Approximation 
The model: Relativistic Impulse Approximation (RIA)

Nuclear Current =⇒ One-body operator
Jµ
N(ω, q⃗) =

∫
dp⃗ ΨF (p⃗+ q⃗)Ĵµ

NΨB(p⃗)

Scattering off a nucleus=⇒ incoherent sum of single–nucleon scattering

processes
Seattle, 06/12/2016 – p. 3

FSI

The model: Relativistic Impulse Approximation (RIA)

Nuclear Current =⇒ One-body operator
Jµ
N(ω, q⃗) =

∫
dp⃗ ΨF (p⃗+ q⃗)Ĵµ

NΨB(p⃗)

Scattering off a nucleus=⇒ incoherent sum of single–nucleon scattering

processes
Seattle, 06/12/2016 – p. 3

Impulse Approximation: 
scattering off a nucleus = incoherent sum of single nucleon scattering processes



Quasi-elastic region: the Relativistic Mean Field Model 

The nucleon wave functions are solutions of the Dirac equation with phenomenological relativistic potentials 
(scalar and vector) 
                                                      �

obtained from a Lagrangian fitted to properties of nuclear radii and masses.

(iγμ∂μ − M − S + V ) ψ ( ⃗r, t) = 0

The Relativistic Mean Field Approach (RMF)
Large scalar (attractive) and vector (repulsive) potentials that lead to saturation. Nonlocalities
& correlation effects accounted for by the RMF? Important difference with non-relativistic
models
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Seattle, 06/12/2016 – p. 5

The ejected nucleon wave function depends on final state interactions (FSI) with the residual nucleus                                        

Important terminology
RELATIVISTIC DISTORTED WAVE IMPULSE APPROXIMATION (RDWIA)
Relativistic distorted (Dirac) wave functions,ΨB ,ΨF and the relativistic nucleon current operator Jµ

p .

RELATIVISTIC PLANE WAVE IMPULSE APPROXIMATION (RPWIA)

Final State Interactions neglected=⇒ΨF -relativistic plane wave (u-Dirac spinor)

Bound Wave Function: ΨB =

⎛

⎝

φup

φdown

⎞

⎠ =

⎛

⎝

φup

σ·p

E+M+S−V
φup

⎞

⎠ = αu+ βv

i.e. ΨB includes negative energy components=⇒ coupling to Dirac sea

PLANE WAVE IMPULSE APPROXIMATION (PWIA)
Negative Energy Components inΨB are projected out
=⇒ Nuclear dynamics and electron-proton
interaction are decoupled. The cross section factorizes:

dσ

dΩedεfdΩp
= Kf−1

recσ
epN(p)

withN(p)-single-particle momentum distribution and σep-single-proton cross section:

σep ∼ ηµνW
µν = ηµν

{

∑

sisf

[

u(pf , sf )J
µ
p u(pi, si)

]

∗
[

u(pf , sf )J
ν
p u(pi, si)

]

}

γ

Q

e'

e

P
A

P
A-1

P
N

σ
eN

~

S

µ

µ

µ

µ

PWIA

~

Seattle, 06/12/2016 – p. 8

Bound wave function

Different treatments of the ejected nucleon wave function:

• Relativistic Plane Wave Impulse Approximation (RPWIA) = no FSI

• FSI can described by: 
                                        - relativistic optical potential, fitted to elastic nucleon-nucleus scattering data: ROP                                                                                                
                                        - the same S & V potentials used for the bound state: RMF
                                          orthogonality preserved: the initial and final wfs are eigenstates of the same H



FSI in the Relativistic Mean Field Model: superscaling test

f(q, ω; kF) ≡ kF ×
[d2σ/dωdΩe]exp

σeN(q, ω; p = pmin, ℰ = 0)
⟶ f(ψ ′�)

The SuperScaling function �
extracted from �  QE data at all 
kinematics and on different nuclei is
independent of �  (I kind scaling)
and of �  (II kind scaling)
[Donnelly and Sick, PRL82 (1999)]

f
(e, e′�)

q
kF

�q ≳ 300 MeV/c

What have we learned from inclusive electron scattering � ?(e, e′�)

�  embodies the nuclear effects and depends upon only one scaling variable (analogous to �  in DIS)f x

ψ ′�(q, ω) ≃
mN

qkF (ω′�−
|Q′�2 |
2mN )

ω′� = ω − Eshift

f RFG
L (ψ ′�) =

3
4 (1 − ψ ′�2 ) θ (1 − ψ ′�2 )

Longitudinal world data 
J.Jourdan NPA 606 (1996) 

From L/T separated data it is found that scaling violations 
mainly occur in the transverse channel at �  due to 
non-QE mechanisms (2p2h, � ,…)

ψ ′� > 0
Δ

Stringent constraint on nuclear modelling



FSI in the Relativistic Mean Field Model: superscaling test

f(q, ω; kF) ≡ kF ×
[d2σ/dωdΩe]exp

σeN(q, ω; p = pmin, ℰ = 0)
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What have we learned from inclusive electron scattering � ?(e, e′�)

�  embodies the nuclear effects and depends upon only one scaling variable (analogous to �  in DIS)f x

ψ ′�(q, ω) ≃
mN

qkF (ω′�−
|Q′�2 |
2mN )

ω′� = ω − Eshift

Longitudinal world data 
J.Jourdan NPA 606 (1996) 

RMF: Comparison with (e, e′) data

exp
fit

RPWIA
rROP

fT (RMF)
fL (RMF)
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Only the description of FSI provided by RMF leads to an asymmetric function
f(ψ′) in accordance with the behavior shown by data. Moreover, fT > fL

Seattle, 06/12/2016 – p. 22

Only the description of FSI provided by 
RMF leads to an asymmetric scaling 
function in accordance with the behaviour 
shown by (e,e’) data.

Moreover  it is the only model to provide
                            �  
in agreement with L/T separated data.

fT > fLLongitudinal world data 
J.Jourdan NPA 606 (1996) 

fL

Caballero et al.,
PRL95 (2005)



The “SuSAv2” Model

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Theoretical description: RMF and SuSAv2 models

The SuSAv2 model PRC90, 035501 (2014) PRD94, 013012 (2016)

✪ SuSAv2 model: lepton-nucleus reactions adressed within the SuperScaling Approach and
the sophisticated Relativistic Mean Field (RMF) theory (FSI) to determine theoretical scaling
functions that reproduce nuclear dynamics. Complete set of scaling functions for all lepton-
nucleus reaction channels (EM, weak, L/T, isovector/isoscalar, V/A).

✪ RMF: Good description of the QE (e, e′) data and superscaling properties (f ee′

L,exp)
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41 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

• The shortcoming of the RMF of being too strong at high energies is corrected for by introducing a q-dependent 
blending function which mixes RMF and RPWIA final states. This introduces two parameters, which are 
fitted once and for all to Carbon (e,e’) data.

• In the “SuSAv2” model the weak response functions are evaluated as
          
                                                             �

  �  single-nucleon responses
  �  set of scaling functions, given by the RMF calculation for all reaction channels (L/T, isovector/isoscalar, V/A)

RK(q, ω) = kF × GK(q, ω) × fK(ψ′ �)

GK

fK

Gonzalez et al., PRC90(2014)
Megias et al., PRD94(2016)



Beyond the Impulse Approximation:  
Meson Exchange Currents and 2p2h excitations

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Neutrino-nucleus reactions for ν oscillation experiments

Challenges for theoretical nuclear models

➠ Modeling of nuclear structure giving the initial kinematics and dynamics of bound nucleons
to provide final leptons and hadrons kinematics (full semi-inclusive models) and accurate FSI.
➠ Expressing the nuclear model to be succesfully incorporated in neutrino event generators.

No clear ID of all
FS particles

⇒ Relevance of 2p2h,
FSI effects, rescatter-
ing processes and π-
production background.

Event topology:
CCQE

CCQE-like = CCQE+CC2p2h
CC0π = CCQE-like with π

absorption background
CC1π
CCDIS

...

82 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

2p-2h
The probe interacts 

with a correlated pair 

of nucleons: beyond IA



Meson Exchange Currents
Neutrino-nucleus reactions for neutrino oscillation experiments

Theoretical description and Results
Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

2p-2h MEC for (e, e ′) and CC ν reactions PRD91, 073004 (2015)

✪ The 2p-2h model is based on the calculation performed by De Pace et al., (2003) for (e, e′)
scattering and extended to the weak sector by Amaro, Ruiz Simo et al. [PRD 90, 033012 (2014);
PRD 90, 053010 (2014); JPG 44, 065105 (2017); PLB 762, 124 (2016)].

✪ The numerical evaluation of the hadronic tensor W µν
2p2h is performed in the RFG model in a

fully relativistic way without any approximation.

✪ It is computationally non-trivial and involves 7D integrals of thousands of terms (+1 for

ν-flux) ⇒ High increase of the computing time of R2p2h
K ⇒ Parametrization

✪ Separation into pp, nn and np pairs in the FS ⇒ also valid for N ≠ Z (40Ar, 56Fe, 208Pb)

16 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

“Seagull” or “contact” “Pion in flight”

Two-body currents in free space

In the medium, they give rise to a huge amount of many-body diagrams, corresponding to the excitation of 2p2h 
states. In the RFG the corresponding hadronic tensor is:

Meson-exchange currents: the role of 2p2h excitations

Meson-exchange currents: the 2p2h response

In our model the MEC are carried by the pion and � degrees of freedom:

“Seagull” and
“Pion-in-flight”

“Pion-pole”

“�-MEC”
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Maria Barbaro Cortona, TNPI2017 14 / 38

“Pion pole”

(only for neutrinos, purely axial)

De Pace et al., Nucl.Phys. A726 (2003) 303-326                electromagnetic MEC 
Ruiz Simo et al., J.Phys. G44 (2017) no.6, 065105            extension to weak sector

Wμν
2p-2h ¼

V
ð2πÞ9

Z
d3p0

1d
3p0

2d
3h1d3h2

m 4
N

E1E2E0
1E

0
2

× rμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× Θðp0
1; p

0
2; h1; h2Þδðp0

1 þ p0
2 − h1 − h2 − qÞ;

ð6Þ

where m N is the nucleon mass, V is the volume of the
system, and we have defined the product of step functions

Θðp0
1;p

0
2;h1;h2Þ¼θðp0

2−kFÞθðp0
1−kFÞθðkF−h1ÞθðkF−h2Þ:

ð7Þ

The function rμνðp0
1;p

0
2;h1;h2Þ is the hadronic tensor for

the elementary transition of a nucleon pair with the given
initial and final momenta, summed up over spin and
isospin, given schematically as

rμνðp0
1;p

0
2;h1;h2Þ ¼

1

4

X

s;t

jμð10; 20; 1; 2Þ%Ajνð10; 20; 1; 2ÞA;

ð8Þ

which we write in terms of the antisymmetrized two-body
current matrix element jμð10; 20; 1; 2ÞA, to be specified. The
factor 1=4 accounts for the antisymmetry of the 2p-2h wave
function. Finally, note that the 2p-2h response is propor-
tional to V, which is related to the number of protons or
neutrons Z ¼ N ¼ A=2 by V ¼ 3π2Z=k3F. In this work, we
only consider nuclear targets with pure isospin zero.
In the case of electrons, the cross section can be written

as a linear combination of the longitudinal and transverse
response functions defined by

RL ¼ W00 ð9Þ

RT ¼ W11 þ W22; ð10Þ

whereas additional response functions arise for neutrino
scattering, due to the presence of the axial current. The
generic results coming from the phase-space obtained here
are applicable to all of the response functions.
Integrating over p0

2 using the momentum delta function,
Eq. (6) becomes a nine-dimensional integral,

Wμν
2p-2h ¼

V
ð2πÞ9

Z
d3p0

1d
3h1d3h2

m 4
N

E1E2E0
1E

0
2

× rμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× Θðp0
1; p

0
2; h1; h2Þ; ð11Þ

where p0
2 ¼ h1 þ h2 þ q − p0

1. After choosing the q direc-
tion along the z axis, there is a global rotation symmetry
over one of the azimuthal angles. We choose ϕ0

1 ¼ 0 and
multiply by a factor 2π. Furthermore, the energy delta

function enables analytical integration over p0
1, and so the

integral is reduced to seven dimensions. In general, the
calculation has to be done numerically. Under some
approximations [25,31,32,36], the number of dimensions
can be further reduced, but this cannot be done in the fully
relativistic calculation.
In this paper, we study different methods to evaluate

the above integral numerically and compare the relativistic
and the nonrelativistic cases. In the nonrelativistic case, we
reduce the hadronic tensor to a two-dimensional integral.
This can be done when the function rμν only depends on the
differences ki ¼ p0

i − hi, i ¼ 1, 2.
As we want to concentrate on the numerical procedure

without further complications derived from the momentum
dependence of the currents, in this paper, we start by setting
the elementary function to a constant rμν ¼ 1. Hence, we
focus on the genuine kinematical effects coming from the
two-particle–two-hole phase space alone. In particular, the
kinematical relativistic effects arising from the energy-
momentum relation are contained in the energy conserva-
tion delta function that determines the analytical behavior
of the hadronic tensor, where the energy-momentum
relation is E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m 2

N

p
, and in the Lorentz contraction

coefficients m N=Ei. Obviously, the results obtained here for
constant rμν will be modified when including the two-body
physical current. But as the final result is model dependent,
it is not possible to disentangle whether the differences
found are due to the current model employed or to the
approximations (relativistic or not) used to perform
the numerical evaluation of the integral. In fact all of the
models of 2p-2h response functions should agree at the
level of the 2p-2h phase-space integral Fðq;ωÞ defined as

Fðq;ωÞ≡
Z

d3p0
1d

3h1d3h2
m 4

N

E1E2E0
1E

0
2

× δðE0
1 þ E0

2 − E1 − E2 − ωÞΘðp0
1; p

0
2; h1; h2Þ;

ð12Þ

with p0
2 ¼ h1 þ h2 þ q − p0

1. Calculation of this function
should be a good starting point to compare and congeni-
alize different nuclear models.

III. NONRELATIVISTIC 2P-2H PHASE SPACE

A. Semianalytical integration

First, we recall the semianalytical method of Ref. [32]
that was used later in Refs. [25,29], for instance, to
compute the nonrelativistic 2p-2h transverse response
function in electron scattering. We shall use this method
to check the numerical 7D quadrature both in the relativistic
and nonrelativistic cases.
We start with the 12-dimensional expression for the

phase-space function, Eq. (6),
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approximations [25,31,32,36], the number of dimensions
can be further reduced, but this cannot be done in the fully
relativistic calculation.
In this paper, we study different methods to evaluate

the above integral numerically and compare the relativistic
and the nonrelativistic cases. In the nonrelativistic case, we
reduce the hadronic tensor to a two-dimensional integral.
This can be done when the function rμν only depends on the
differences ki ¼ p0

i − hi, i ¼ 1, 2.
As we want to concentrate on the numerical procedure

without further complications derived from the momentum
dependence of the currents, in this paper, we start by setting
the elementary function to a constant rμν ¼ 1. Hence, we
focus on the genuine kinematical effects coming from the
two-particle–two-hole phase space alone. In particular, the
kinematical relativistic effects arising from the energy-
momentum relation are contained in the energy conserva-
tion delta function that determines the analytical behavior
of the hadronic tensor, where the energy-momentum
relation is E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m 2

N

p
, and in the Lorentz contraction

coefficients m N=Ei. Obviously, the results obtained here for
constant rμν will be modified when including the two-body
physical current. But as the final result is model dependent,
it is not possible to disentangle whether the differences
found are due to the current model employed or to the
approximations (relativistic or not) used to perform
the numerical evaluation of the integral. In fact all of the
models of 2p-2h response functions should agree at the
level of the 2p-2h phase-space integral Fðq;ωÞ defined as
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with p0
2 ¼ h1 þ h2 þ q − p0

1. Calculation of this function
should be a good starting point to compare and congeni-
alize different nuclear models.

III. NONRELATIVISTIC 2P-2H PHASE SPACE

A. Semianalytical integration

First, we recall the semianalytical method of Ref. [32]
that was used later in Refs. [25,29], for instance, to
compute the nonrelativistic 2p-2h transverse response
function in electron scattering. We shall use this method
to check the numerical 7D quadrature both in the relativistic
and nonrelativistic cases.
We start with the 12-dimensional expression for the

phase-space function, Eq. (6),
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2p2h MEC many-body diagrams

(a) (b) (c) (d)

FIG. 2: The direct pionic contributions to the MEC 2p-2h response function.

(a) (c) (e) (f)(d)(b)

FIG. 3: The direct pionic/∆ interference contributions to the MEC 2p-2h response function.

(a) (c)(b) (d) (e) (f)

FIG. 4: The direct ∆ contributions to the MEC 2p-2h response function.
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(a) (b) (c) (e)(d) (f)

FIG. 5: The exchange pionic/∆ interference contributions to the MEC 2p-2h response function.

(a) (b) (c) (d) (e) (f)

FIG. 6: The exchange ∆ contributions to the MEC 2p-2h response function.

and ∆ (Fig. 5) we have

RE{π∆}
T (k1,k2;k

′
1,k

′
2; q,ω) =

=
V 4

(2M)4

∑

στ

∑

ij

(

δij −
qiqj
q2

)

[

Jπ†
i (k1,k2)J

∆
j (k′

1,k
′
2) + J∆†

i (k1,k2)J
π
j (k

′
1,k

′
2)
]

=
16f 3

πNNfγππfγN∆fπN∆

3µ4
πM

Bq2

{

(k2 × k′
2)

2
L

(k2
2 + µ2

π)(k
′2
2 + µ2

π)

[

1

k2
1 + µ2

π

+
1

k′2
1 + µ2

π

]

+ (1 ↔ 2)

}

+
8f 3

πNNfγπNNfγN∆fπN∆

3µ4
πM

B

{

(q · k2)k′2
2 + (q · k′

2)k
2
2 − (q · k′

2)(k2 · k′
2)− (q · k2)(k2 · k′

2)

(k2
2 + µ2

π)(k
′2
2 + µ2

π)

+
(q ·k1)k′2

2 − (q · k′
2)(k1 · k′

2)

(k2
1 + µ2

π)(k
′2
2 + µ2

π)
+

(q · k′
1)k

2
2 − (q · k2)(k′

1 · k2)

(k′2
1 + µ2

π)(k
2
2 + µ2

π)
+ (1 ↔ 2)

}

. (20)

The contribution of the ∆ alone (Fig. 6) is instead

RE∆
T (k1,k2;k

′
1,k

′
2; q,ω) =

V 4

(2M)4

∑

στ

∑

ij

(

δij −
qiqj
q2

)

Jπ†
i (k1,k2)J

∆
j (k′

1,k
′
2)

=
4f 2

πNNf
2
πN∆f

2
γN∆

9M2µ4
π

q2

{

B2

[

(k1 · k′
1)(k1T · k′

1T )

(k2
1 + µ2

π)(k
′2
1 + µ2

π)
+

(k1 · k′
2)(k1T · k′

2T )

(k2
1 + µ2

π)(k
′2
2 + µ2

π)
+ (1 ↔ 2)

]

+AB

[

2(k1 × k′
1)

2
L − 2k1Lk′

1L(k1 · k′
1) + k′2

1Lk
2
1 + k2

1Lk
′2
1

(k2
1 + µ2

π)(k
′2
1 + µ2

π)

2(k1 × k′
2)

2
L − 2k1Lk′

2L(k1 · k′
2) + k′2

2Lk
2
1 + k2

1Lk
′2
2

(k2
1 + µ2

π)(k
′2
2 + µ2

π)
+ (1 ↔ 2)

]}

. (21)
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De Pace et al., NPA726 (2003)

• fully relativistic calculation based on RFG
• all many-body diagrams involving 2 pions are included
• each diagram is a 7-dimensional integral+flux integration
• the numerical calculation has been checked using two different techniques:
 1. polarization propagator, many-body Goldstone diagrams, analytical manipulation of isospin traces 
and Dirac matrices spin traces  using FORM, Monte Carlo integration 
 2. numerical evaluation of the hadronic tensor, including spin and isospin traces: np, nn and pp can be separated



Some representative results:

                     1. �      inclusive electron scattering

                     2. �     charged current neutrino scattering
                                            “CCQE-like” or “CC0 � ”
                                            no pions in the final state

A(e, e′�)X

A(νμ, μ)X
π

Some representative results

A(e,e’)B 
Inclusive electron scattering



Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

Inclusive 12C(e, e ′) cross sections PRD 94, 013012 (2016)
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Validation: Carbon (e,e’)

G.D. Megias et al., PRD94 (2016)

Good agreement with data 

in a wide kinematical region 

Data: Barreau, NPA 402A (1983)
          Day. PRC 48 (1993)



0 0.1 0.2 0.3 0.4 0.50

20000

40000

60000

80000

d2 σ
/d
Ω

/d
ω

 (n
b/

G
eV

/sr
)

SF
QE
2p-2h MEC
Inelastic
Total

16O, Ei=700MeV, θ=32o

0 0.1 0.2 0.3 0.4 0.5 0.60

5000

10000

15000

20000

25000

30000

16O, Ei=737MeV, θ=37.1o

0 0.1 0.2 0.3 0.4 0.5 0.60

10000

20000

30000

40000
16O, Ei=880MeV, θ=32o

0 0.2 0.4 0.6 0.8
ω (GeV)

0

5000

10000

15000

d2 σ
/d
Ω

/d
ω

 (n
b/

G
eV

/sr
)

16O, Ei=1080MeV, θ=32o

0 0.2 0.4 0.6 0.8
ω (GeV)

0

2000

4000

6000

8000

10000
16O, Ei=1200MeV, θ=32o

0 0.2 0.4 0.6 0.8 1
ω (GeV)

0

1000

2000

3000

4000
16O, Ei=1500MeV, θ=32o

FIG. 2: (Color online) Comparison of inclusive 16O(e, e′) cross sections and predictions of the

SuSAv2-MEC model. The separate contributions of the pure QE response (dashed violet line),

the 2p-2h MEC (dot-dashed), inelastic (double-dot dashed) are displayed. The sum of the three

contributions is represented with a solid blue line. The spectral function (SF) result for the QE

cross section is also shown for comparison (dashed green curve). The data are from [30] and [31].

ativistic kinematics, but since it is essentially rooted in PWIA it contains no transverse

enhancement as in SuSAv2 approach and has no two-body MEC or meson production con-

tributions. Its magnitude is therefore generally somewhat smaller than the SuSAv2 QE

contribution and differs slighly in the position of the QE peak. This said, it is encouraging

that the SF and SuSAv2 results for the QE contributions are not dramatically different.

B. T2K neutrino –16O scattering

Results for CC neutrino reactions on 16O are shown in Fig. 3. Each panel presents the

double differential cross section averaged over the T2K muonic neutrino flux versus the

muon momentum for fixed bins of the muon scattering angle. These kinematics correspond

to the T2K experiment [1]. SuSAv2-MEC predictions are compared with data. Contrary to

the (e, e′) cross sections shown in the previous section, here only the QE and 2p-2h MEC

contributions are taken into account, as this is consistent with the analysis of T2K-16O
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Validation: Oxygen (e,e’)

G.D. Megias et al., JPG 46 (2019) Data: Anghinolfi et al., NPA 602 (1996)
         O’Connell et al., PRC 35 (1987)



Validation: JLab (e,e’) data on Ar and Ti

Data from H.Dai et al.,  PRC98 (2018);  PRC99 (2019)
Experiment aimed at measuring the Argon spectral function
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Results: comparison with electron and neutrino data

T2K CC0fi ‹µ-C in the SuSAv2-MEC model
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Results: comparison with electron and neutrino data

T2K CC0fi ‹µ-C in the SuSAv2-MEC model
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G.D. Megias et al, JPG46 (2019)

12C

T2K data, PRD 97 (2018) 

                                                  T2K                        !  
                                                                                no pions in the final state

(νμ, μ−) CC0π

�  dataCC0π



Megias et al., JPG 46 (2019) 

T2K: Oxygen versus Carbon, !  CC0π

Negligible differences between oxygen and carbon at T2K conditions

than the ones obtained when FSI are included. Hence the significant discrepancy introduced
by the SF prediction is mostly due to the plane-wave limit approach. Authors in [58] show
that the description of data improves when the hole spectral function is complemented by the
particle spectral function and Pauli blocking. Importantly, a large amount of the data collected
in the T2K experiment shown here falls into this region. The SuSAv2 approach involves an
assumption which is discussed more fully in previous work where the ideas were developed
about how so-called Pauli Blocking can be generalized from the only model where the
concept is well-founded, namely, the extreme RFG model. The results obtained within the
SuSAv2 approach are not in disagreement with the data, even at forward angles. However,
one should still exercise some caution in drawing any final conclusions about how well one
can claim to understand this region, i.e. in any existing model. This problem deserves to be
given greater attention in the future.

3.3. T2K: oxygen versus carbon

To make clear how nuclear effects enter in the analysis of the T2K experiment, in figure 5 we
show the predictions provided by SuSAv2-MEC for the neutrino-averaged double differential
cross sections per neutron in the cases of 12C (red lines) and 16O (blue). Here we show only
the total results of adding the QE and MEC contributions, since the latter are essentially equal
for carbon and oxygen when scaled by the number of neutrons in the two nuclei; the MEC

Figure 5. Similar to figure 3, but now including also the results corresponding to the
T2K-νμ CCQE process on 12C. The data are from [22, 52].
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cross sections per neutron in the cases of 12C (red lines) and 16O (blue). Here we show only
the total results of adding the QE and MEC contributions, since the latter are essentially equal
for carbon and oxygen when scaled by the number of neutrons in the two nuclei; the MEC

Figure 5. Similar to figure 3, but now including also the results corresponding to the
T2K-νμ CCQE process on 12C. The data are from [22, 52].
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FIG. 1. (Color online) The MINERνA “QE-like” and “CCQE” double differential cross sections for ν̄µ scattering on hydrocarbon
versus the muon transverse momentum, in bins of the muon longitudinal momentum (in GeV/c). The curves represent the
prediction of the SuSAv2+2p2h-MEC (blue) as well as the separate quasielastic (red) and 2p2h-MEC (orange) contributions.
The data and the experimental antineutrino flux are from Ref. [1]
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Summary and future work 

➡ Validation against (e,e’) data is a solid benchmark for nuclear models to be used in analyses of 
neutrino oscillation experiments. Superscaling sets strong constraints on modelling.

➡ The SuSAv2-MEC model, based on RMF and including FSI and two-body currents, provides a 
satisfactory comparison with both electron and neutrino scattering off different nuclei (carbon, 
oxygen, calcium, titanium, argon).

➡ Computationally demanding microscopic calculations can be translated into a rather 
straightforward formalism, easier to be implemented in MC event generators (GENIE: 2p2h 
implemented, 1p1h in progress).

➡ Next steps: 

                   - inclusive neutrino scattering including all inelasticities (DIS), important for DUNE

                   - semi-inclusive reactions (more sensitive to nuclear model effects), necessary to
                     compare with future exclusive measurements and to get more reliable
                     implementation in MC generators. 
                     RMF has been successfully used in the 90s to describe � . 
                     Extension to weak reactions is in progress.

(e, e′�p)
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