Exploring Nucleon Structure and Hadronization with Dihadrons and Hadrons in Jets at STAR

Jim Drachenberg

for the STAR Collaboration

IOP Institute of Physics

International Nuclear Physics Conference 2019 29 July - 2 August 2019, Scottish Event Campus, Glasgow, UK

August 2, 2019

OUTLINE

- TSSAs and transversity
- STAR
- Dihadrons at STAR
- Hadrons-in-jets at STAR
- Looking forward
- Summary

A Surprise from Transverse Single-spin Asymmetries

$$A_{UT} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

 $\sigma^{\uparrow(\downarrow)}$ -- cross section for *leftward* scattering when beam polarization is spin-*up*(down)

> Collinear pQCD at leading twist: very small A_{UT}

Sizeable A_{UT} at forward pseudorapidity across a large range of \sqrt{s}

Measurements at RHIC in region where NLO pQCD crosssection provides a reasonable description of the data → Go beyond collinear pQCD at leading twist

→ Insight into transverse polarization structure?

Shown results from E704, PLB 261, 201 (1991) STAR, PRL 101, 222001 (2008) STAR, PRD 89, 012001 (2014) PHENIX, PRD 90, 012006 (2014)

Transverse Single-spin Asymmetries and Transversity

Collins mechanism [J. Collins, NP B396, 161 (1993)]

- Transversely polarized quarks inside transversely polarized proton
- Quark polarization transfer during hard scatter
 - Distribution of hadrons correlated to quark polarization
 - Azimuthal asymmetry in distribution of hadrons within the jet
 - Requires non-zero quark transversity
 - Requires spin-dependent TMD fragmentation function

Sa

 ϕ_{S}

 \overline{p}_{1}

 \overline{p}_{beam}

Dihadron fragmentation functions, aka "IFF"

e.g. Bacchetta and Radici, PRD 70, 094032 (2004)

- Azimuthal asymmetry in orientation of hadron pairs $p_{h,2}$ fragmenting from same parent quark
 - Requires non-zero quark transversity
 - Requires spin-dependent collinear di-hadron FF

 $\overline{p}_{h,1}$

STAR, PLB 780, 332 (2018)

 \overline{R}

Transversity

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF, f(x)
- Helicity PDF ($\Delta f(x)$)
- Transversity $(h_1(x) \text{ or } \delta q(x))$ chiral odd \rightarrow requires another chiral-odd distribution
 - $\Delta q(x) \delta q(x)$: direct connection to *non-zero OAM components* of proton wave function
 - Tensor charge, $\delta q = \int_0^1 [\delta q(x) \delta \overline{q}(x)] dx$

The Solenoidal Tracker at RHIC

The Solenoidal Tracker at RHIC

RHIC as Polarized-proton Collider

- "Siberian Snakes" → mitigate depolarization resonances
- Choice of spin orientation → independent of experiment
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Spin pattern varies fill-to-fill

Jets (1 < η < 1.8), π^0 , γ , e^{\pm}

Dihadron Asymmetries at STAR

Drachenberg -- Dihadrons and hadrons-in-jets at STAR

Collins Effect at STAR

First-ever Collins Asymmetries in $p^{\uparrow} + p$ *Models based on SIDIS/* e^+e^-

- Assume universality and robust factorization
- DMP&KPRY: no TMD evolution
- KPRY-NLL: TMD evolution up to NLL

Consistency between models and STAR data at 95% confidence level → Suggests robust factorization and universality

To evolve or not to evolve?

 $\chi^2/\nu = 14/10$ (w/o) vs. 17.6/10 (with) For now, "Beauty is in the eye of the beholder!"

STAR Collaboration, PRD 97, 032004 (2018) D'Alesio, Murgia, Pisano: PLB 773, 300 (2017) Kang, Prokudin, Ringer, Yuan: PLB 774, 635 (2017)

(a.k.a. need more data!)

Collins Effect at STAR

STAR Looking Forward

- High-stats data from 2015 (200 GeV pp & pA) and 2017 (500 GeV pp) under analysis
- STAR after RHIC BES-II, e.g. FY22 and beyond: *enhanced sensitivity to high (and low)* x
 - First p + p runs with STAR iTPC upgrade
 - First runs with STAR forward upgrade
 - Forward ECAL+HCAL+Tracking: <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648</u>
 - Transversity at high x via forward "Collins" and IFF
 - HCAL: Very positive feedback from NSF and fully expect to receive funding!
 - Significant progress, e.g. beam tests, prototype runs, detector construction

Summary

- TSSAs at STAR provide a unique window to nucleon structure and hadronization
 - Access transversity via dihadrons (collinear) and Collins (TMD)
 - Test TMD factorization/universality and evolution
 - STAR dihadron and Collins asymmetries consistent with expectations based on SIDIS
- First global transversity analysis including p + p dihadron data
 - Constraints for *u*-quark improved over previous IFF extraction
 - *d*-quark extraction including *pp* data qualitatively more similar to Collins extractions
- STAR Collins asymmetries at 200 and 500 GeV informing model calculations
 - Asymmetries appear to exhibit x_T scaling
 - Appears that the asymmetry does not factorize as $A_{UT} \sim f(j_T) \times f(z)$
 - Analysis of (un)polarized data from recent runs underway
- Preparation for future STAR polarized runs, including forward upgrade, well underway
 - HCAL: Very positive feedback from NSF and fully expect to receive funding!
 - Significant progress on beam tests, prototype runs, detector construction, etc.

Stay tuned!