A variety of physics using radioactive beams at ISOLDE and HIE-ISOLDE @ CERN

Gerda Neyens
ISOLDE Collaboration Spokesperson
CERN (Switzerland) and KU Leuven (Belgium)
CERN’s Radioactive Ion Beam (RIB) facility

50% of protons at 1.4 GeV, (2 μA) from PS Booster.
Unique worldwide: high energy (1.4 GeV) protons onto a thick target, e.g. 238U

The protons split up the heavy nucleus in one of three ways
- Fission
- Fragmentation
- Spallation
Producing purified beams: RILIS

- **Resonance Ionization Laser Ion Source** (since 1994)
- **Selective and efficient ionization of one particular element** (e.g. Tin)

 - CAN ALSO BE USED FOR SPECTROSCOPY

![Diagram of RILIS setup]

Proton beam

Isotope Mass selection with dipole magnets

Isotope Element selection with lasers
A diverse research program in 15 experimental set-ups

ISOLDE PIE 2018

- ~ 35 % low-energy RIB’s for nuclear structure
- Nuclear structure from ground state properties 22%
- Nuclear structure from beta decay 14%
- Solid state physics 12%
- Biophysics 6%
- Medical physics 4%
- TISD 4%
- Coordinators reserve 6%
- ~ 20 % other
- HIE ISOLDE 32%
- Scattering chamber @Miniball 11%
- Coulomb excitation @Miniball 12%
- Transfer T-REX@Miniball 4%
- Transfer @ ISS 5%
- ~ 35 % accelerated RIB’s for nuclear and astrophysics

HIE-ISOLDE

An accelerator of Radioactive Ion Beams (RIB’s)
Now 3 experimental set-ups available

Period 2015-2018
HIE-ISOLDE
superconducting LINAC accelerates RIB’s
up to 9.5 MeV/nucleon

Since 2001:
REX-ISOLDE NC Linac accelerates RIB’s to
2.8 MeV/nucleon

40-60 keV RIB from ISOLDE
Recent highlights from HIE-ISOLDE
Safe Coulex on ^{132}Sn

^{132}Sn, 5.49 MeV/u, 3×10^5 ions/s

\rightarrow Precision on B(E2) improved by more than factor 10!

^{132}Sn is doubly magic and spherical

\rightarrow Enhanced B(E2) as compared to $^{130-134}\text{Sn}$ confirmed

\rightarrow Enhanced B(E3)
ISOLDE Solenoidal Spectrometer

- 4T superconducting (former MRI) solenoid from UQ hospital, Brisbane to ISOLDE in 2017

Helical orbit spectrometer principle

Target on the field axis + array of Si detectors.

MEASURE: position z, cyclotron period T_{cyc} and energy E_p of emitted protons from transfer reaction

Suffers no kinematic compression of the Q-value spectrum.

Linear relationship between E_{cm} and E_{lab}
Spring-Summer 2017: construction of proper shielding around ISS

Nov. 2017: Field mapping and beam transmission tests

Sept. 2018: Successful commissioning with stable 22Ne beam and the HELIOS Si-detector array from Argonne Nat. Lab.

October 2018: Two successful RIB experiments
 ➢ Transfer reactions using the maximum HIE-ISOLDE beam energies
EXP #1 IS621 – 28Mg(d,p)29Mg Angular distributions results

Dave Sharp, Liam Gaffney

3.105 28Mg/s
9.5 MeV/u

FWHM <115keV

Angular distributions extracted for 9 states up to 4.32 MeV (2 unbound).

Compared to DWBA calculations to make preliminary assignments – calculations extrapolated for unbound states.
EXP#2 IS631 - 206Hg(d,p)207Hg set up

- 5.10^5 206Hg/s
- 7.4 MeV/u (purity > 98 %)

- 30 deuterated polyethylene targets (165 mg/cm²) (to deal with target degradation)
- Special target ladder (automatic moving)
Experiments with low-energy RIB’s

- **Masses**
 - ISOLTRAP (Penning trap + MR-TOF-MS)

- **Decay spectroscopy**
 - Isolde Decay Station (IDS) since 2015

- **Moments, radii and spins**
 - LASER SPECTROSCOPY (COLLAPS, CRIS, RILIS)

- **Material research** with short lived isotopes
 - Emission channeling, PAC, β-NMR, Mossbauer
Recent highlights from low-energy ISOLDE

Franchoo et al., PRC64 (2001) decay of Ni isotopes at LISOL (LLN)

Lowering of $\pi f_{5/2}$ when filling $\pi g_{9/2}$
(due to strong p-n interaction, enhanced due to tensor force)

→ Inversion of levels predicted from 75Cu onwards

I. Stefanescu et al., PRL 100 (2008)

Coulex at REX-ISOLDE up to 73Cu
→ 5/2- level is single-particle like!

T. Otsuka et al, PRL 95, 232502 (2005)
Inversion of the $\pi f_{5/2}$ and $\pi p_{3/2}$ levels in 75,77Cu

Collinear laser spectroscopy on bunched beams (ISCOOL)

Model-independent spin determinations: 5/2

Magnetic moments: proton occupies $\pi f_{5/2}$

Experimental sensitivity improved by factor 200

K.T. Flanagan et al., PRL 103 (2009)

71,73,75Cu

R.P. de Groote et al., PRC 96 (2017)

73,75,77Cu

Experimental sensitivity improved by another factor 300
Shape coexistence in Hg isotopes (1972 – 1986)

Hg: $Z=80$

Huge increase in the charge radii of neutron-deficient 181,183,185Hg ($N=101,103,105 \rightarrow$ neutron mid-shell)

$\Delta r = 0.7$ fm!

Shape coexistence established in 185Hg!

Microscopic description remained unexplained for more than 30 years!

Remove more neutrons: what happens??
Shape coexistence in Hg isotopes

Combining resonance laser ionisation in the RILIS ion source with detection in 3 different experimental stations!

Hg mean square charge radii

FIRST large scale MCSM calculations in this heavy mass region (Otuska et al.)

→ origin of the staggering is understood microscopically!

Due to enhanced (tensor) interaction between $vi_{13/2}$ and $\pi h_{9/2}$

→ Favors occupations of these orbits, leading to increased deformation and lowering of the energy

$E_{\text{mon}} = f(j_p, j_n)n_{\pi}(j_p)n_{\nu}(j_n)$

E(1+) intruder isomer energy in 34Al

34Mg, 700 ions/s

1p-1h intruder state at $E = 46.6$ keV
Search for 229Th isomer energy

M. Verlinde et al., submitted to PRC

Requirement: 229Ac should take substitutional site in CaF

Method: Emission Channeling

Idea to measure radiative decay energy:
- Produce intense beam of 229Ac
- 229Ac decays into the 229mTh isomer (13%)
- To block Internal Conversion decay
 - implantation in wide bandgap material CaF (12 eV)
 - radiative decay dominates!

* Measure the radiative decay energy (VUV)
 - CaF is transparent for VUV radiation

229Ac
\[\beta \ (13\%) \]

229Th
\[\lambda \sim 159 \text{ nm (VUV)} \]
\[t_{1/2} \sim \text{hours} \]

E \sim 8 \text{ eV} \ (IC, 7 \mu s)

3/2^+

5/2^+

Courtesy P. Van Duppen, L. Pereira et al.
Outlook to the future
The EPIC Project: Exploiting the Potential of ISOLDE at CERN
(not yet approved by CERN)

The EPIC project comprises of 6 key upgrades (in no particular order):

- The addition of two new target stations and a high resolution mass separator
- Improvement of the existing beam dumps
- Provide 2 GeV protons to ISOLDE
- The addition of a second experimental hall
- Installation of a storage ring beyond the HIE-ISOLDE post accelerator
- An upgrade of the non-superconducting part of HIE-ISOLDE (REX-part)
New opportunities with EPIC@CERN for the (European) (Nuclear) Physics Community

- **Upgrade of the HIE-ISOLDE pre-accelerator (REX)**
 - higher A/Q (up to 5.5) so more intense heavy beams, with a variable time structure and up to 10 MeV/u also for those around Pb.

- **Higher RIB beam intensities (gain factor 2 to 50)**
 - thanks to the LHC intensity upgrades (LIU) at CERN
 - Higher proton beam intensity from booster (from 2 → 4 μA)
 - Higher proton beam energy (from 1.4 → 2 GeV) from booster

- **Two new (additional) target stations + a new low-energy hall**
 - Have multiple *simultaneous* beams for users (low/high energy)

- **Improved mass separation capabilities**
 - Purer beams are better for *efficient* reacceleration

- **A new storage ring for short-lived, light and heavy ions**
 - New perspectives for precision studies in nuclear, atomic and astrophysics
Conclusions

◆ ISOLDE now provides slow and accelerated RIB’s (up to ~10 MeV/u) for more than a dozen permanent experiments (and a few travelling setups) for studying:
 ◆ Nuclear physics
 ◆ Nuclear astrophysics
 ◆ Solid state physics
 ◆ Bio-physics
 ◆ Fundamental interactions and symmetries

◆ Future upgrades are under discussion in the framework of the EPIC Project (Exploiting the Potential of ISOLDE @ CERN)

First ISOLDE-EPIC workshop: December 3-4
followed by the Annual ISOLDE Users Meeting on December 5-6

Many more results and details in several contributions at this conference