Exploring the hot and dense QCD matter with HADES

- Heavy ions, cold matter and elementary reactions.
- A, p, pion beams
- Probing the dense and hot matter with: electromagnetic probes, sub-threshold strangeness production, emission anisotropies, particle correlations (femtoscopy, resonances)...
- \(\text{Au+Au} \sqrt{s_{NN}} = 2.42 \text{ GeV} \) and \(\text{Ag+Ag} \sqrt{s_{NN}} = 2.55 \text{ GeV} \)
Thermal dielectrons at $\sqrt{s_{NN}} = 2.42$ GeV

- e^+e^- invariant mass distribution fully corrected for acceptance

- Strong broadening of the in-medium ρ spectral function
- Enable measurement of fireball temperature $\langle T_{\text{fireball}} \rangle = 72 \pm 2$ MeV

- Thermal rates folded over coarse-grained UrQMD medium evolution works at low energies
- Supports baryon-driven medium effects at SPS and RHIC (LHC).

HADES Collab., accepted for publication in Nature Physics
Verify the ρ-baryon coupling mechanism

π^- beam $\sqrt{s} = 1.49$ GeV

e$^+$$e^-$ invariant mass distribution ratio to point-like contributions

- Dominance of the N^* (1520) resonance
- Invariant mass and angular distributions (4 differential analysis) are consistent with
 - ρ decays
 - VDM form factors (pion cloud)

G. Ramalho, T. Pena, Phys. Rev. D95 (2017), 014003
Φ-AntiKaosn Interplay in Cold Matter

$\pi + C$

$\pi + W$

$d_C \approx 5 \, fm$

$d_W \approx 14 \, fm$

\rightarrow Mean free path $\lambda_\pi = 1.5 \, fm$

($p_\pi = 1.7 \, GeV/c, \rho_B \approx \rho_0$)
Φ-AntiKaon Interplay in Cold Matter

Suppression of K^- relative to K^+

Similar suppression for φ like for K^-
Φ-AntiKaon Interplay in Cold Matter

- Suppression of K^- relative to K^+
- Similar suppression for φ like for K^-

In HADES acceptance:

$$(\phi/K^-)_C = 0.55 \pm 0.04^{(stat)} + 0.06^{(sys)}$$

$$(\phi/K^-)_W = 0.63 \pm 0.06^{(stat)} \pm 0.11^{(sys)}$$
High statistic multi-differential data

$p, d, t \quad v_1, v_2, v_3, v_4$

Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV
High statistic multi-differential data

Comparison p, d, t at mid-rapidity

Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

N. Borghini and J.-Y. Ollitrault, PLB 642 2006
High statistic multi-differential data

Comparison p, d, t at mid-rapidity

Sensitivity to the equation of state

UrQMD prediction: P. Hillmann et al.

Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

\begin{align*}
\rho, \ldots, t & \quad V_1, V_2, V_3, V_4 \\
\text{Scaling of } v_2 \text{ and } p_t \text{ with } A
\end{align*}
Sensitivity to the equation of state

$p, d, t \quad v_1, v_2, v_3, v_4$

UrQMD prediction: P. Hillmann et al.

High statistic multi-

Comparison p, d, t at mid-

rapidity

Scaling of v_2 and p_t with A

Borghini and J.-Y. Ollitrault, PLB 642 2006

Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

N. Borghini and J.-Y. Ollitrault, PLB 642 2006
Sensitivity to the equation of state \(p, d, t \) \(v_1, v_2, v_3, v_4 \)

\[v_4 = 0.5 v_2^2 \]

N. Borghini and J.-Y. Ollitrault, PLB 642 2006

High statistic multi-

Ideal-fluid scaling: the limit of the \(v_2 \) contribution to \(v_4 \) at large \(p_t \) is given by \(v_4 = 0.5 v_2^2 \)

\[v_{4b} = \alpha \left(\frac{p_{\text{out}}}{p_0} \right) + \beta \left(\frac{p_{\text{out}}}{p_0} \right)^\gamma \]

Parameters: hard \(\text{EoS} \) soft \(\text{EoS} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>hard EoS</th>
<th>soft EoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) [MeV]</td>
<td>-124</td>
<td>-356</td>
</tr>
<tr>
<td>(\beta) [MeV]</td>
<td>71</td>
<td>303</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>2.00</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Au+Au at \(\sqrt{s_{NN}} = 2.42 \) GeV
HADES follows trend from higher energies STAR and NA49 data than trend from E895.

→ room for structures?

Indications for charge-sign differences reported previously:

First time observation of significant charge-sign splitting!
Correlated pion – proton pairs

Au+Au at \(\sqrt{s_{NN}} = 2.42\) GeV

\(\pi p\)

\(\pi^+p\)
\[\sigma(M) = a \frac{q^3}{q^3 + 180^3} \frac{1}{4 \left(\frac{M - M_0}{\Gamma_0} \right)^2 + 1} \]

where

\[q = \sqrt{\frac{\left(M^2 - (M_p + M_\pi)^2 \right) \left(M^2 - (M_p - M_\pi)^2 \right)}{4M^2}} \]

\[J. \text{Cugnon, M.C. Lemaire, Nucl. Phys. A 489, 781 (1988)} \]

\[\pi^\pm p \text{ correlated yield} \]

Au+Au at \(\sqrt{s_{NN}} = 2.42 \text{ GeV} \)
\(\sigma(M) = a \frac{q^3}{q^3 + 180^3} \frac{1}{4 \left(\frac{M - M_0}{\Gamma_0} \right)^2 + 1} \)

\(q = \sqrt{\frac{(M^2 - (M_p + M_n)^2) (M^2 - (M_p - M_n)^2)}{4M^2}} \)

\[\text{Au+Au at } \sqrt{s_{NN}} = 2.42 \text{ GeV} \]
Production scalings Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

arXiv:1812.07304
Production scalings Au+Au at $\sqrt{S_{NN}} = 2.42$ GeV

arXiv:1812.07304

Strangeness

Dileptons

$\alpha = 1.45 \pm 0.06$
$\chi^2/\text{NDF} = 5.90/10 = 0.59$

Excess yield $\times 10^4$

$b \times \langle A_{\text{part}} \rangle^\alpha$
$\alpha = 1.44 \pm 0.17$

$0.3 < M_{\text{inv}} < 0.7 \text{ GeV/c}^2$
Production scalings $\text{Au+Au at } \sqrt{s_{NN}} = 2.42 \text{ GeV}$

Scaling $N \sim <A_{\text{part}}>^\alpha$ with parameter similar to that of strange hadrons and excess yield of virtual photons!

arXiv:1812.07304
\[\text{Ag+Ag} \sqrt{s_{NN}} = 2.55 \text{ GeV} \]
Ag+Ag $\sqrt{s_{NN}} = 2.55$ GeV

HADES monitoring
Ag+Ag 1.58A GeV
Date: 01 April 2019
Event rate: 16-18 kHz
Collected events: 15268.68×10^6
Collected data: 359.23 TB
Last update: 6:00

Event Display

Anticipated Events
Recorded Events

March 2019

~ 15 billion events

PID: Velocity vs Momentum - RPC

e^+ / e^- Cherenkov Rings

Online Hyperons: $\Lambda \rightarrow p + \pi^-$

signal $(u \pm 2\sigma) = (1.05 \pm 0.01) \times 10^5$
signal / background = 1.18
significance = 238.8
The new HADES ECAL

- Based on lead glass recycled from OPAL
- Refurbished and complemented with HADES TRB3 PADIWA read-out system based on commodity hardware
Ag+Ag $\sqrt{s_{NN}} = 2.6$ GeV: Virtual Photons

- $\frac{1}{2}$ of the CBM RICH photon detector
- Stable operation during 4 weeks of beamtime
Ag+Ag $\sqrt{s_{NN}} = 2.6$ GeV: Virtual Photons

- $\frac{1}{2}$ of the CBM RICH photon detector
- Stable operation during 4 weeks of beamtime
Summary

- Exponential falling di-electron spectrum, \(<T_{ee}> = 72 \text{ MeV} \), \(p \) melted.
- Universal production scaling as a function of \(\text{Apart} \) regardless strangeness content despite different production thresholds.
- Systematic measurement of \(v_1, v_2, v_3, v_4 \), femtoscopy and baryonic resonances.
- FAIR-Phase0: Ag+Ag data fresh on tape! Work in progress
Summary

- Exponential falling di-electron spectrum, $<T_{ee}> = 72$ MeV, ρ melted.
- Universal production scaling as a function of Apart regardless strangeness content despite different production thresholds.
- Systematic measurement of v_1, v_2, v_3, v_4, femtoscopy and baryonic resonances.
- FAIR-Phase0: Ag+Ag data fresh on tape! Work in progress
Summary

• Exponential falling di-electron spectrum, $<T_{ee}> = 72$ MeV, ρ melted.

• Universal production scaling as a function of A_{part} regardless strangeness content despite different production thresholds.

• Systematic measurement of v_1, v_2, v_3, v_4, femtoscopy and baryonic resonances.

• FAIR-Phase0: Ag+Ag data fresh on tape! Work in progress
Summary

- Exponential falling di-electron spectrum, \(<T_{ee}> = 72 \text{ MeV}, \rho \text{ melted} \).
- Universal production scaling as a function of \(\text{Apart} \) regardless strangeness content despite different production thresholds.
- Systematic measurement of \(v1, v2, v3, v4 \), femtoscopy and baryonic resonances.
- FAIR-Phase0: \(\text{Ag+Ag} \) data fresh on tape! Work in progress
Summary

• Exponential falling di-electron spectrum, $<T_{ee}> = 72$ MeV, p melted.

• Universal production scaling as a function of Apart regardless strangeness content despite different production thresholds.

• Systematic measurement of v_1, v_2, v_3, v_4, femtoscopy and baryonic resonances.

• FAIR-Phase0: Ag+Ag data fresh on tape! Work in progress