Matter's Origin from the RadioActivity of trapped and laser oriented ions

Pierre Delahaye for the MORA collaboration
β-decay as a laboratory for weak interaction
O. Naviliat, *Rare isotopes as laboratories for fundamental-interactions studies*, this conference

- Probing intrinsic symmetries

C. S. Wu et al., *Phys Rev* 105(1957)1413

Parity violation in 60Co decay

- Polarized nuclei

\[
A_\beta \frac{\langle \vec{J} \rangle \cdot \vec{p}_e}{J \cdot E_e} = A \left(C_A^2, C_V C_A \right)
\]

P odd
β-decay as a laboratory for weak interaction

O. Naviliat, *Rare isotopes as laboratories for fundamental-interactions studies*, this conference

Unpolarized nuclei

- Recoil detection
- \(β - \text{recoil coincidences} \)

\[a_{βν} \frac{p_e}{E_e} \cdot \frac{p_ν}{E_ν} \]

LPCTrap@GANIL

- Pure GT: \(a_{GT} (C_T^2, C_A^2) = -1/3 \) (SM)
- Pure F: \(a_F (C_S^2, C_V^2) = +1 \) (SM)

Polarized nuclei

- \(β - \text{recoil coincidences} \)
- Fixed \(J \)

\[D \frac{⟨J⟩}{J} \cdot \left(\frac{p_e}{E_e} \times \frac{p_ν}{E_ν} \right) \]

The MORA project!

- \(D \propto \text{Im} (C_V C_A^*) \)
- \(D = 0 \) (SM)

- P, T even
- Search for exotic currents
- T odd
- Search for new sources of CP violation

8/28/2019

P. Delahaye, INPC2019, Glasgow
LPCTrap: a Paul trap based precision experiment

- Transparent Paul trap, UHV
- Ions confined in the middle of the device, nearly at rest
- In coincidence detection of the electron and the recoil ion

\[a_{\beta,\gamma} \frac{p_e}{E_e} \cdot \frac{p_\gamma}{E_\gamma} \]

\(E_\beta, t_{\text{start}} \) \(\beta \) particle \(\theta_{er} \) Recoil ion \(t_{\text{stop}} \)

- Beta telescope
- Silicone stripped detector + Scintillator
- MCP
- Delay lines anode

In coincidence measurement of:
- the time of flight of the recoil ion \(t_R \)
- the beta particle energy \(E_\beta \)
- the angle between these two particles \(\theta_{er} \)

Trap and detection setup

- **MCP**
 - Active Ø80 mm
 - \(\sigma_T \sim 200\text{ps} \)

- **Delay lines**
 - \(\sigma_x, \sigma_y \sim 200\mu \text{m} \)
 - E. Liénard et al. NIMA 551(2005)

- **DSS Si Detector**
 - 60 x 60mm x 300µm
 - 1 mm resolution
 - Plastic scintillator
 - \(\sigma_E \) 10% at 1 MeV
 - \(\sigma_T \sim 200\text{ps} \)

- **Trap**
 - Effective trapping radius 5mm

Results of LPCTrap

- $\alpha_{\beta V}$ measurement for different nuclei
 - Analysis ongoing within « THESMOG »

- New constraints on $|C_T|/|C_A|$ from 6He decay
- Improvements on $\sigma(V_{ud}) / V_{ud}$ from mirror decays of 35Ar and 19Ne

- Shake–off probabilities and precise tests of atomic physics models

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Date</th>
<th>α</th>
<th>σ_{stat}</th>
<th>σ_{syst}</th>
<th>Published results</th>
</tr>
</thead>
<tbody>
<tr>
<td>6He</td>
<td>2006</td>
<td>-0.3335</td>
<td>0.0073</td>
<td>0.0075</td>
<td>$\sigma_a /a \sim 3%$ Fléchard et al. JPG38 (2011)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>-1/3 (SM)</td>
<td>0.0015</td>
<td>?</td>
<td>Shakeoff Couratin et al. PRL108 (2012)</td>
</tr>
<tr>
<td>35Ar</td>
<td>2011</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Shakeoff Couratin et al. PRA88 (2013)</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>0.9004 (SM)</td>
<td>0.0013</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>19Ne</td>
<td>2013</td>
<td>0.0438 (SM)</td>
<td>0.0046</td>
<td>?</td>
<td>Shakeoff Fabian et al. PRA97(2018)</td>
</tr>
</tbody>
</table>
Precision measurement of the triple correlation D

A non-zero D can arise from CP violation

- CP violation observed in the K and B-meson decays is not enough to account for the large matter–antimatter asymmetry
- T-odd correlations in beta decay (D and R) and n-EDM searches are sensitives to larger CP violations by 5 to 10 orders of magnitude

Below 10^{-4}, Final State Interactions mimic a non zero correlation

D correlation measurement to the 10^{-5} level with some beam, laser and trapping R&D

- Best measurement so far $d_n < 2 \times 10^{-4}$
- Complementary probe to search for New Physics with nEDM and LHC searches
- First approach / probe of D_{FSI}

See P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413.
Sensitivity to NP

• D correlation measurements in neutrons and nuclei
 – Best limits on T-violating phase $\text{Im}(C_V/C_A)$
 • neutron decay, $D_n = (-0.94 \pm 1.89 \pm 0.97) \times 10^{-4} \Rightarrow \text{Im}(C_V/C_A) < (1.6 \pm 6.3) \times 10^{-4}$
 *emiT collaboration, PRL 107, 102301 (2011),

• 19Ne decay, $D = 0.0001 \pm 0.0006$, limited by statistics
 Calaprice et al, Hyp. Int. 22 (1985) 83

– Sensitivities depends on the transition $D_X = F(X) \times \text{Im}(C_V/C_A)$

– Final State Interactions as well
 J. C. Brodine Phys Rev D1(1970)1

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>19Ne</th>
<th>23Mg</th>
<th>39Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(X)$</td>
<td>-0.55</td>
<td>0.66</td>
<td>0.82</td>
<td>-0.90</td>
</tr>
<tr>
<td>D_{FSI}</td>
<td>1.2×10^{-5}</td>
<td>1.5×10^{-4}</td>
<td>1.2×10^{-4}</td>
<td>-3×10^{-5}</td>
</tr>
</tbody>
</table>

23Mg and 39Ca can be laser polarized as ions
23Mg best produced and laser polarized \Rightarrow first candidate
D correlation measurement setup

In trap optical polarization

\[
\frac{N_{\text{coinc}}^{+45^\circ} + N_{\text{coinc}}^{+135^\circ} - N_{\text{coinc}}^{-45^\circ} - N_{\text{coinc}}^{-135^\circ}}{N_{\text{coinc}}^{+45^\circ} + N_{\text{coinc}}^{+135^\circ} + N_{\text{coinc}}^{-45^\circ} + N_{\text{coinc}}^{-135^\circ}} = \delta \cdot D \cdot P
\]

Where \(\delta \) is depending on the phase space coverage.
Experimental challenges

• In trap polarization:
 – Novel method not yet tested
 – Simulations with 10kHz pulsed lasers → >99% polarization in ~1ms

• Trapping capacity and trapping half life
 – Presently 5\cdot10^5 ions/bunch, aiming at 5\cdot10^6/bunch
 – Presently 500ms, aiming at several s (^{23}\text{Mg}: T_{1/2}=11s)

Optimized trap geometry M. Benali and G. Quemener

Trapping radius
From: 4.5\text{mm} (LPCTrap + environment)
To: 11\text{mm} (MORA + environment)
 ➢ Negligible evaporation losses
 ➢ pseudo-potential depth x 5

• Systematic effects \approx 10^{-5}
 – D_n measurement, dominated by statistics, give hints
 – Tests and simulations of the detection setup are just starting
 • GEANT 4 simulations for electrons
 • Home made simulations for dynamics of trapped ion and recoil ion trajectories
Phoswich detector: combination of two plastic scintillators:
- thin scintillator (0.5 mm, \(\tau=1.8\) ns)
- thick scintillator (5 cm, \(\tau=285\) ns)
(+ Mylar + Téflon)

\[Q_{\text{fast}} + Q_{\text{slow}} = Q_{\text{tot}} \]

=> beta, gamma discrimination
Phoswich detectors tests

- Detectors calibration using ^{207}Bi (β, γ) and ^{137}Cs (β)
 - Done

- Study of the magnetic field effect on PMs
 - Done
 - (effect of magnetic field on signal resolution and PMs gain)

- Detector test in a secondary vacuum
 - Done

- GEANT 4 simulations
 - in progress

Stable resolution by varying the magnetic field

M. Benali
JYFL: $\sim 10^5 \, ^{23}\text{Mg/s}$
Laser setup readily available

1) Polarization degree measurement $\sim \%$ level
2) D correlation measurement $\sim 5 \cdot 10^{-4}$ level
Highest sensitivity measurements

SPIRAL 2 LINAC

High intensity p, d, He beams
(1-5 mA) 30-40 MeV
High intensity heavy ion beams
(1-10 pµA) 14.5 AMeV

S3 NEUTRON FOR SCIENCE EXPERIMENTAL AREA
Up to 30 MeV n

Experimental hall for very low energy beams (keV)

NFS DESIR

GANIL

Super Separator Spectrometer
RIBs from fusion reactions

SPIRAL 1: >10^8 \(^{23}\)Mg/s
?? S3-LEB: >10^6 39Ca/s

D correlation < 5 \times 10^{-5} level

Experimental areas and cyclotrons: heavy ions (pµA) up to 95 AMeV

SPIRAL 1 facility: RIBs from fragmentation
Summary/Perspectives

- **New perspectives with polarized beams with MORA at JYFL**
 - **Proof of principle of the polarization to be done at JYFL**
 - Adapted IGISOL – 4 Laser setup
 - Pulsed (TiSa) or CW (Dye) laser schemes are being investigated
 - Adapted trapping setup from LPCTrap
 - Adapted detection setup carried out by GANIL and LPC Caen

 - **First measurement of D at JYFL**
 - Best sensitivity for nuclear beta decay is probably possible
 - LoI for ^{23}Mg beam characterization

 - **Theoretical efforts**
 - for defining what NP one is probing with D measurements to the 10^{-5} level
 - For reviewing D_{FSI} calculations

- **D correlation measurement with unprecedented accuracy in SPIRAL 2**
 - 1 week of beam time:
 - same accuracy as for the neutron with existing techniques
 - Better sensitivity to NP: type of transition and selection of detection plane
 - Can go down to the 10^{-5} level with some beam, laser and trapping R&D
 - improvement by 1 order of magnitude on the sensitivity to NP $Im(C_V/C_A)$
 - First approach/probe of D_{FSI} for ^{23}Mg
 - Great physics with great challenges!

- **Project has officially started in April 2018**

- **ANR funds for PhD and postdoc positions as of 2020**

8/28/2019
P. Delahaye, INPC2019, Glasgow
Thanks a lot for your attention

E. Liénard
Y. Merrer
M. Benali
X. Fléchard
G. Quéméner

P. Delahaye
B.M. Retailleau
P. Ujic
F. De Oliveira
N. Lecesne
R. Leroy

I. Moore
T. Eronen
R.P. De Groote
A. De Roubin
A. Jokinen
A. Kankainen

N. Severijns
W. Gins

A. Falkowski
M. Gonzalez-Alonso

M. Kowalska
G. Neyens

M.L. Bissel