

Application of plasma mass spectrometry for half-life measurement of medium and long-lived radionuclides

Ben Russell¹, Emma Braysher^{1,2}

¹Nuclear Metrology Group, NPL ²University of Surrey

INPC 30th July 2019

Outline

- Introduction to NPL
- ICP-MS background
- Uses of ICP-MS at NPL
- Application to half-life measurements
 - Motivation
 - Theory
 - Results to date
 - Conclusions and future work

National Physical Laboratory

National Physical Laboratory

The UK's National Measurement Institute

- Founded in 1900
- Based in Teddington, South West London
- ~900 specialists in measurement science (~30 in Nuclear Metrology)
- Purpose built laboratory campus
- Operated and owned by the Department for Business, Energy and Industrial Strategy
- Strategic partners- University of Surrey and Strathclyde

Mass Spectrometry in the Nuclear Metrology Group

Aim: to develop innovative procedures for measurement of radionuclides using state-of-the-art mass spectrometry

June 2014

September 2015 onwards

- Inductively coupled plasma mass spectrometry (ICP-MS)
- Expand the number of radionuclides measurable compared to decay counting techniques alone

Inductively coupled plasma mass spectrometry (ICP-MS)

- Sample introduction- aqueous sample, typically in dilute acid
- Torch- sample evaporated, atomised and ionised into beam of singly charged positive ions
- Interface- focusing of ion beam as it passes from atmospheric to vacuum conditions
- Mass analyser- focus ions by mass-to-charge ratio
- **Detector-** output in counts per second
- Measurement time of several minutes per sample

Radioactivity measurement by mass spectrometry

$m = A \times MM \times t_{1/2} / ln(2) \times N_A$

 If t_{1/2} is in seconds, MM in g/mol, and A in Bq/g, m will be expressed as g/g

• What does this mean?

- For an equivalent activity, the number of radioactive atoms is proportional to analyte molar mass and half-life
- Mass spectrometry is more sensitive for measurement of longlived radionuclides

Radioactivity measurement by mass spectrometry

Specific activity $(Bq/g) = (In(2) \times N_A)/(m \times t_{1/2})$

Mass equivalent to 1 Bq (pg) = $(1/SpA) \times 1 \times 10^{12}$

Radionuclide	t _{1/2} (years)	Specific activity (Bq/g)	Mass equivalent to 1 Bq (pg)*
⁹⁰ Sr	28.8	5.1×10 ¹²	0.2
¹⁵¹ Sm	94.7	9.3×10 ¹¹	1.1
¹³⁵ Cs	2.3×10 ⁶	4.1×10 ⁷	2.4×10 ⁴
129	1.5×10 ⁷	6.5×10 ⁶	1.5×10 ⁵
²³⁸ U	4.5×10 ⁹	1.2×10 ⁴	8.0×10 ⁷

*1 pg = 1×10^{-12} g- typical ICP-MS limit of detection 0.001 - 1 pg/g

Applications

Application	Radionuclides currently measurable	Industry need
Actinides	 ²³¹Pa, ²³²Th, ²³⁷Np, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴³Am 	Fuel reprocessing, decommissioning, NORM
Medium-lived radionuclides	⁹⁰ Sr, ¹⁵¹ Sm, ²²⁶ Ra, ⁶³ Ni	Waste characterisation and decommissioning
Isotope ratios	¹³⁵ Cs/ ¹³⁷ Cs, ¹²⁹ I/ ¹²⁷ I, ²³⁹ Pu/ ²⁴⁰ Pu	Nuclear forensics
Long-lived, low abundance radionuclides	¹²⁹ I ^{, 93} Zr, ⁹⁹ Tc	Decommissioning, long-term waste monitoring
Stable analogues of short-lived nuclides	Rare earth elements	Nuclear medicine- rapid development and validation of procedures
Material characterisation	Various (recent examples ²²⁶ Ra and ⁹⁹ Tc)	Reference material characterisation, separation materials e.g. resins, graphene. nanomaterials
Radionuclide standards	Nuclides with half-life >30 years	High purity mass spectrometry standards for validation

Radionuclide measurement by mass spectrometry

 Effectiveness of mass spectrometry dependent on the half-life and interference removal

Removing interferences using ICP-MS/MS

- Collision/reaction cell and additional quadrupole mass filter
- Improvement in interference removal capability
- Reduces or removes need for offline separation, reducing procedural time

Example applications

NATIONAL Physical Laboratory

How can ICP-MS contribute to decay data?

- Underpin methods developed for challenging nuclides
- ICP-MS increasingly used to contribute to half-life measurements
- In some cases, values have not been carried out for a long time
- Inconsistencies in the methodology used from a mass spectrometry perspective

Aim for a comprehensive assessment of different ICP-MS techniques for measurement and interference assessment

What has to be considered?

Mass bias

- For ICP-MS, lighter isotopes are more scattered than heavier isotopes
- Correction using isotope dilution and sample/standard bracketing with a certified isotopic standard
- Isobaric, polyatomic and tailing interferences
 - Chemical and/or instrument separation
- Detector response
 - Calibration across pulse and analogue detector modes
- Instrument response
 - Monitoring of internal standard during run

General experimental approach

What approaches can be used?

Isotope dilution

- Measurement of relative abundance of the radionuclide of interest using another isotope of the same element
- Relies on:
 - Precise instrument calibration
 - Accurate correction for isotope fractionation and interferences
 - Well-known recovery after sample preparation

NPL O

Isotope dilution

Single isotope dilution

- Add known amount of isotope of the element of interest, and measure the isotopic ratio
- Can calculate the concentration of the isotope of interest:

 R_{mix} = measured isotope ratio R_{master} = isotope ratio before spike F = mass discrimination factor A = abundance of the element of interest ${}^{i}A$ = target isotope and ${}^{j}A_{s}$ = spiked isotope

Isotope dilution

Calibration standard dilution

 A set of isotope dilution solutions can be prepared against a reference standard to generate a calibration curve. This can be compared to the spiked sample to determine composition

Isotope dilution

Double dilution

- Used when composition and amount of spiked solution is unknown
- Reverse dilution- spike is diluted with a natural standard of known composition, followed by dilution with spike and sample of interest

Triple dilution

- 2× reverse isotope dilution
- Eliminates the need to determine sample composition
- Theoretically lower measurement uncertainty, longer procedural time
- Recommended for enriched spikes with challenging sample compositions, or memory effects between sample dilutions

Example: ²³⁸U by ²³⁴U dilution

$$[U]_{S} = [U]_{Sp} \times \frac{m_{Sp}}{m_{S}} \times \frac{M_{S}}{M_{Sp}} \times \frac{(234)_{Sp}}{(234)_{S}} \times \frac{\left(\frac{238}{234}U\right)_{M}}{\left(\frac{238}{234}U\right)_{S}} - \left(\frac{238}{234}U\right)_{M}}$$

M, S and Sp = mixture, sample and spike, respectively m and M = masses and atomic weights of sample and spike, respectively (234) is the atomic abundance of 234 U expressed in atoms (238)_s is the mass abundance of 238 U

Half-life calculated from:

$$t_{1/2} = \frac{\ln(2) \cdot N_0 \cdot m}{A \cdot M \cdot f}$$

 N_0 = Avogadro's number m = mass concentration of ²³⁸U A = activity of the solution per unit mass M = atomic mass of ²³⁸U f = number of seconds in a year

Cassette et al. 2010

What approaches can be used?

Separation and ingrowth

- Measurement of long-lived radionuclide with relatively short-lived daughter
- Chemical separation, followed by ingrowth measurement relative to the parent over several years
- Method does not assume secular equilibrium e.g. between ²³⁴U and ²³⁸U
- Alternative approach for when a stable isotope is not available for isotope dilution
- Assumes that there is no external input of either nuclide over time

Varga et al. 2016

Example: ²³⁴U by ²³⁰Th ingrowth

²³⁰Th ingrowth after separation can be calculated by:

$$\frac{n(^{230}\text{Th})(t)}{n(^{234}\text{U})(t)} = \frac{\lambda_{\text{U-234}}}{\lambda_{\text{Th-230}} - \lambda_{\text{U-234}}} (e^{-\lambda_{\text{U-234}}t} - e^{-\lambda_{\text{Th-230}}t}) + \frac{n(^{230}\text{Th})^{0}}{n(^{234}\text{U})(t)} e^{-\lambda_{\text{Th-230}}t}$$

- n(²³⁰Th)(t) and n(²³⁴U)(t) = number of atoms as a function of time
- $\lambda_{\text{Th-230}}$ and $\lambda_{\text{U-234}}$ = decay constants
- $n(^{230}Th)^0 = ^{230}Th$ after chemical separation (t = 0)
- t = elapsed time since separation
- Low decay constant and short ingrowth time (3-4 years) means λt is close to 0
- Using approximations e^x ≈ 1+x and (1 − λ_{Th-230}t) ≈ 1, and that decay of accumulated of ²³⁰Th and ²³⁴U decay is negligible:

$$\frac{n(^{230}\text{Th})(t)}{n(^{234}\text{U})(t)} \approx \lambda_{\text{U-234}}t + \frac{n(^{230}\text{Th})^0}{n(^{234}\text{U})^0}$$

- $n(^{234}U)^0 = ^{234}U$ at the time of separation (t=0)
- n(²³⁰Th)/n(²³⁴U) is linearly proportional to the time since chemical separation (t), where the regression coefficient is equal to the decay constant

- Tailing removed by one or two quadrupole mass filters
- Hydride formation due to splitting of water in the plasma. Removal options:
 - Desolvating sample introduction (reduces water loading into the plasma)
 - ICP-MS/MS

Single quadrupole measurement

- Most significant interference is bias towards ²³⁶U due to ²³⁵U¹H
- No evidence of ²³⁵U tailing onto ²³⁴U

- Change in bias with mass analysed
- Some mass bias correction laws are based solely on mass difference between isotopes, which would not be applicable here
- Wider range of masses needs investigating

MS/MS O₂ measurement

- Two quadrupole mass filters removes tailing
- O₂ shifts ²³⁵U¹H to ²³⁵U¹⁶O, but not ²³⁵U¹⁶O¹H
- Change in bias as lighter isotopes more readily form oxides
- Under cell conditions tested, lighter isotopes more readily form oxides, 'hiding' instrument bias
- Needs further investigation

Instrument drift

 Due to variations in instrument performance, and matrix effects

National Physical Laboratory

- Different effect on different isotopes
- Internal standard with multiple isotopes must be considered

Pulse/analogue detector settings

- High abundance isotope (e.g. ²³⁵U) in analogue, lower abundance isotopes in pulse
- P/A correction with calibration standards for each isotope that cross the detector modes

Conclusions and next steps

- ICP-MS primarily used at NPL to expand radionuclides measurable compared to decay counting techniques alone
- This needs to be underpinned with contribution to nuclear decay data
- Aim for comparison of approaches to address inconsistencies between techniques
- A comparison with alternative instrument designs would be useful:
 - Multi-collector instrument- multiple detectors, improved isotope ratio precision, no need for peak 'hopping'
 - RIMS/AMS- improved sensitivity, interference removal

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a whollyowned company of the Department for Business, Energy and Industrial Strategy BEIS)